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Abstract

The minimum violation problem asks for a vertex map from a digraph to a pattern digraph that
minimizes violation, the total weight of the edges not mapped to an edge. We are interested in
surjective mappings. We characterize all patterns where a minimum violation map that fixes some
vertices can be computed in polynomial time. We also make progress in the case where we do not fix
any vertex in the mapping, including when the digraph is disconnected, when the graph is in the
variety of finite paths. Moreover, we obtain a dichotomy result for trees. We apply the result to some
cut problems, including k-cut with size lower bounds and length bounded k-cuts.

1 Introduction

The graph homomorphism problem is a classic decision problem that asks if there exists a homomorphism
from a graph G to H. That is, is there a mapping of the vertices, such that edges in G map to edges in H.

Many problems can be modeled as graph homomorphism problems, for example, graph coloring [30].
The problem also generalizes to the directed case. In optimization contexts, knowing if there exists
a homomorphism is not enough. Therefore, there are generalizations to finding homomorphisms of
minimum cost [28,31].

In this paper, we consider another generalization of the graph homomorphism problem. A special
case was considered by Elem, Hassin and Monnot [18]. Instead of asking for a homomorphism of
minimum cost, we are interested in how close a map can be to a homomorphism. It captures the idea
as to how many edges to remove to obtain a homomorphism. We establish the result on more general
digraphs.

For two digraphs G = (V,E) and H = (U, F), a vertex map from G to H is a mapping f : V — U. We
call the digraph H the pattern. An edge uv € E is a violated edge under f if f (u)f (v) ¢ F. The violation
of a map is the number of violated edges. If the digraph G is weighted, then the violation is the total
weight of the violated edges. That is, for a weight function w : E — N, the violation of the vertex map

f:V—>Uis
Z w(uv).
uveE,f (u)f (v)¢F
We consider the following problems, where H = (U, F) is a fixed digraph.

o The surjective minimum violation problem for H, SVIO(H): Given a digraph G = (V, E) with weight
w: E — N, find a surjective vertex map from G to H that minimizes the violation.
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e The retraction minimum violation problem for H, RVIO(H): Given a digraph G = (V, E) such that
U C V, and a weight function w : E — N. Find a vertex map f from G to H, such that the restriction
fly of f to U is the identity function and the violation is minimized.

For SVIO(H ), we assume that |V| > |U]| as it is necessary and sufficient for the existence of a feasible
surjective vertex map. A problem is tractable if every instance can be solved in polynomial time with
respect to the instance size. A digraph H is s-tractable if SVIO(H) is tractable and r-tractable if RVIo(H) is
tractable. In particular, s-tractable is a strictly weaker property than r-tractable, since there are digraphs
that are s-tractable but not r-tractable, the simplest is a graph consisting of 3 isolated vertices. A digraph
is reflexive, if every vertex has a self-loop. SVIO(H) and RVIO(H) on an appropriate reflexive digraph H
models a variety of graph cut problems (see section 1.2). We are interested in classifying which digraphs
are r-tractable, and which are s-tractable. The r-tractable digraphs have been characterized through the
algebraic approach [49]. However, given a digraph H, it is unclear if one can test if H is r-tractable in
polynomial time. A digraph H is s-intractable if SVIO(H) is NP-hard. A dichotomy result would classify
each digraph H as either s-tractable or s-intractable. Note we differentiate between s-intractable and
not s-tractable. A digraph H could be neither s-tractable nor s-intractable. Indeed, SVio(H) could be a
NP-intermediate problem, which exists assuming P #= NP [40].

We give an efficient characterization of the r-tractable digraphs and make progress in classifying
s-tractable reflexive digraphs. We also give some s-tractability and s-intractability results for particular
classes of digraphs.

1.1 Previous and related work

A vertex map f from G to H is a homomorphism if every edge maps to an edge. The violation is 0 if and
only if the mapping is a homomorphism. The minimum violation problem is an optimization version
of the homomorphism problem. Various homomorphism problems have been studied (see [30] for a
survey). We will focus on the variations most relevant to our study. The H-retraction problem, RHOM(H),
can be defined as deciding if the input digraph G has a homomorphism from G to H that fixes the vertices
in H. The digraphs where RHOM(H) is tractable are called ry-tractable. Feder and Vardi showed for each
H, RHOM(H) is equivalent to some constraint satisfaction problem (CSP) depending on H [20]. Since the
resolution of CSP dichotomy conjecture, the rj-tractable digraph have been completely classified [6,52].
However, it is not clear that there is an efficient algorithm for recognizing r,-tractable digraphs. Note
RHoOM(H) is not a special case of RVIo(H). In the H-surjective homomorphism problem, denoted by
SHoM(H), the input is a digraph G, and the goal is to verify if there is a surjective homomorphism from
G to H. The problem is also known as surjective H-coloring. A digraph H is sy-tractable if SHOM(H) is
tractable. There are many works on sy-tractable digraphs. We refer to the recent survey by Bodirsky
et al. [5]. A recent breakthrough showed that a length 4 reflexive cycle is not sy-tractable [45]. Chen
studied an algebraic criterion for deciding the equivalence of SHoM(H) and RHom(H) [12]. It was used
to show that directed reflexive cycles and non-transitive tournaments are not sy-tractable [42]. The
approximation aspect of graph homomorphism was studied in [41]

To the best of our knowledge, the only work on s-tractability of graphs is the work by Elem et al. [19].
They used the terminology of G,-cut and G,-multiway-cut for SVIo(G) and RVIO(G), respectively. Here
G is the complement graph of G. They showed approximation results of finding the minimum violation
is NP-hard when the edge weight of the graph forms a metric. One important result is that a graph is
r-tractable if the set of vertices with maximal neighborhoods forms a clique.

For s-tractability, Elem et al. showed various results, all of which follow from the fact that an r-
tractable graph is s-tractable, and sy-intractable graphs are s-intractable. In addition, they claimed that
when the graph is a disjoint union of reflexive complete graphs, it is s-tractable. However, their proof
sketch is missing details, and only the case where each complete graph is a single vertex can be verified.



In the minimum cost homomorphism problem with respect to H, we are given a digraph G = (V, E)
and a cost function ¢ : V x V(H) — N. The cost of a map f is ),y c(v,f(v)). The problem asks
for a homomorphism with minimum cost. A complete classification of pattern H that gives tractable
problems for graphs and digraphs is known [28,31]. For the approximation aspects of minimum cost
homomorphism, Hell et al.showed that for non-reflexive graphs, co-circular arc bigraphs are the only ones
with constant factor approximation [29]. Rafiey, Rafiey and Santos extended the result to a dichotomy of
all graph, and obtained some progress on digraphs [47]. Note that the previous authors allowed infinite
cost, but it can be simulated by having cost with much larger value, as since the cost itself is part of
the input. The minimum cost and violation problem, CVIO(H), does not require the violation to be 0.
Instead, it asks for a map that minimizes the sum of the cost and violation. H is c-tractable if CVio(H)
is tractable. Deineko et al. gave an efficient classification of c-tractable digraphs as a consequence of
MAXCSP theory. H is c-tractable if and only if the adjacency matrix of H is permuted anti-monge [15].
The approximation aspects were also considered.

Finally, there is another closely related problem. Given a graph G = (V,E), a weight function
w:E—>N,ametricd : UxU — N, and cost ¢ : V x U —» N. We want to find a function f : V — U,
such that it minimizes ), ., c(v, f (v)) + X.,,cg w(wv)d(f (w), f (v)). The problem is studied under the
name the metric labeling problem [38]. If ¢ is 0 everywhere, it is called the O-extension problem [8]. The
specific metrics d where 0-extension problem can be solved in polynomial time was characterized by
Hirai [33].

Valued CSP The problem RVIO and CVIO are special cases of Valued CSPs (VCSP) over weighted
constraint languages. That is, for each H, there exists a weighted constraint language T', such that
RVIO(H) (CVIO(H)) is equivalent to VCSP(T"). The complexity dichotomy of VCSP result was completely
resolved [49]. Given T, testing if VCSP(T') is polynomial time solvable is NP-complete [49], but can be
solved in polynomial time when the size of the domain is a constant [39]. Similarly, each SVio(H) is
equivalent to a Surjective Valued CSP on some constraint language I', denoted SVCSP(I'). However,
SVCSP is much less well understood. SVCSP for the Boolean case are completely understood [21],
which implies the case for SVIO(H) where H consists of 2 vertices. In particular, in the same paper, they
showed examples of graph H that is s-tractable but not r-tractable. Recently, Matl and Zivny have made
additional progress to SVCSP, characterizing more cases where the problem can be solved in polynomial
time [46]. However, it does not provide new insights to SVio.

1.2 Applications to cut problems

A cut problem is a problem where one removes the minimum number of edges to “disconnect” some set
of k terminals. Here the definition of disconnect varies among the problems. In the fixed-terminal cut
problems, we fix the set of terminals to disconnect. The global cut problems take the minimum over
all fixed-terminal cuts. If the fixed-terminal cut problem is equivalent to RVio(H), then the global cut
problem is usually equivalent to SVIO(H). In cut applications, the pattern H is always reflexive. SVio(H)
is closer to a coloring problem if H does not have any self-loop.

A k-partition of V is a k-tuple of pairwise disjoint non-empty sets (V1, ..., Vi) such that their union is
V. Each V; is a partition class. An edge crosses the partition if its two endpoints are in different partition
classes. The value of a set of edges is the sum of the weight of the edges. The value of a partition is the
value of the edges crossing the partition. Many cut problems often have an equivalent formulation as
finding a k-partition satisfying a certain property.

Here we survey some cut problems that can be modeled by the minimum violation framework.

k-way-cut and k-cut Given a graph G and k terminal vertices T, a k-way-cut is a set of edges C, such
that each vertex in T is in a different component of G — C. A k-cut is a k-way-cut for some set of k
terminals. The kWAYCUT problem asks for a minimum k-way-cut, given the input graph and k terminals.
kWAYCUT is the same as finding a k-partition where each terminal is in a different partition class, and



Find a minimum Directed?  Property P Equivalent pattern H

k-cut undirected no path between terminals k isolated vertices
s-size-k-cut undirected a k-cut with s-size constraints K, U---UK,,

(£, k)-cut undirected no length < { path between terminals By

k-reach-cut directed no vertex can reach two terminals Sk

linear-k-cut directed t; cannot reach t; for j > 1 Ty

bicut directed no t;ty-path nor t,t,-path Hpicut

Table 1: The cut problems. How to read the table: Finding a minimum weight set of edges C in a
undirected(directed) graph such that G — C has property P over some sequence of terminals (tq,..., t;)
is equivalent to SVIO(H).

the number of edges crossing partitions is minimized. The kCUT problem asks for the minimum k-cut in
the graph. Hence kCuUT is the global version of kWAYCUT. Let kK; be the graph that consists of k isolated
vertices with self-loops. kWAYCUT is equivalent to RVio(kK;) and kCUT is equivalent to SVio(kK;). kCUT
is solvable in polynomial time for all fixed k [23]. kCUT is W[1]-hard in terms of k [16], but it is in FPT
for cut-size [37]. kWAYCUT is NP-hard for k > 3 [13]. kCUT is an example of the global problem strictly
easier than the fixed-terminal problem.

s-size k-cut Lets = (sq,...,5;) be a non-decreasing vector of positive integers, where the sum is o. For
a graph G, a k-cut C is a s-size k-cut if we can find a k-partition (V;,..., V), such that |V;| > s; for all
1 <i <k, and C are the edges crossing the k-partition. The sSiZEkCUT problem asks to find a s-size
k-cut of minimum weight for an input graph G. We recover kCUT when s is the all 1 vector. sS1ZEKCUT
is equivalent to SVIO(K;, U...UK; ), where K,, is the reflexive complete graph on n vertices. We always

assume the number of vertices in the input graph is at least Zle S;.

When k = 2, there are at most t = Zfi_ll rll) = O(n*271) cuts with the smaller side size smaller than
so. By the pigeonhole principle, one of the smallest t + 1 cuts is a minimum s-size cut. Hence we can
obtain an algorithm with running time O(mn®2) = O(mn°~*1), where O hides log factors by enumerating
the smallest t + 1 cuts [50]. Here n and m are the number of vertices and edges of the input graph,
respectively. Elem et al. claimed the algorithm of Goldschmidt and Hochbaum can be modified to solve
sS1ZEkCUT for fixed k, but we could not verify the proof [19]. A randomized algorithm is known for
arbitrary k with running time O(n?°) in an unpublished manuscript [24]. The s-size k-cut problem was
also noted as the lower-bounded k-Way Min-Cut problem [46].

(¢, k)-way-cut and (¢, k)-cut The length of a path is the number of edges in the path. Consider a
graph G with k specified terminal vertices tq,..., t;. A set of edges C such that in G — C, the distance
between each pair of terminals is at least £ + 1, is a (£, k)-way-cut. A (£, k)-cut is an (£, k)-way-cut for
some set of k terminals. In the graph with an (¢, k)-way-cut removed, the distance between every pair of
terminals is at least £ + 1. The (¢, k)-way-cut problem, denoted by (£, k)WAYCUT, takes an input graph
G and k terminals, and returns an (£, k)-way-cut of minimum weight. Similarly, finding a minimum
(€, k)-cut is the problem denoted by (£, k)CUT. Note (o0, k)-way-cut is the standard k-way-cut. For the
special case where k = 2, (£, 2)-way-cut is the £-length bounded st-cut. In this case, (£,2)WAYCUT is
polynomial time solvable for £ < 3 and £ = oo. It is NP-hard if 4 < / < oo, but constant approximation
is possible [1,35,44]. Note (£,2)CUT is equivalent to remove the minimum number of edges to increase
the diameter to at least £ + 1. It was shown to be NP-hard if £ is not fixed [48]. Recently, there is a study
on the FPT aspects of a more general version of (£, k)-way-cut, which specify a length lower bound for
each pair of the vertices [ 17]. However, it is still unknown for which fixed £ and k > 3 the problem is
NP-hard. Consider that £ is finite, let By , be the following reflexive graph. If £ is even, it consists of k



copies of length % paths. One endpoint of each path is identified. If £ is odd, it consists of k copies of

length Z%l paths and a clique defined on one endpoint of each path (See Figure 1.1a and Figure 1.1b).
We show (£ — 1, k)WAYCUT, (£ — 1, k)CuT, RVIO(By ;) and SVIO(By () are all equivalent.

k-way-reach-cut and k-reach-cut Let G be a digraph. A set of edges C is a k-way-reach-cut for a set of
k terminals T, if in G — C, each vertex can reach at most one terminal in T. C is a k-reach-cut if C is a k-
way-reach-cut for some set of k terminals. Again, kWAYREACHCUT and kREACHCUT denotes the problem
of finding a minimum k-way-reach-cut and k-reach-cut, respectively. When k = 2, kWAYREACHCUT is
studied as the minimum st-double cut problem. Bernath and Pap showed that minimum st-double cut
can be solved in polynomial time using a flow-based approach [3]. The minimum 2-reach-cut is precisely
the minimum set of edges such that its removal destroys all arborescences in the digraph [3]. Let S; be a
reflexive directed in-star, that is, a set of k vertices having an outgoing edge to the center vertex. (See
Figure 1.1d). It was shown that kWAYREACHCUT is equivalent to RVIO(S;) and kREACHCUT is equivalent
to SVI0o(S;) [9]. We will show S is not r-tractable, but s-tractable.

Linear-k-cut For a digraph G, a set of edges C is a linear-k-way-cut for a tuple of k terminals (t,..., t;),
if there is no path from ¢; to t; foralli < j in G—C. C is a linear-k-cut if it is a linear-k-way-cut for some
k-tuple of terminals. LINEARKWAYCUT and LINEARKCUT denote the problem of finding a minimum linear-
k-way-cut and a minimum linear-k-cut. LINEARKWAYCUT was studied in approximating multicuts [10].
LINEARKWAYCUT is NP-hard for all k > 3. A v/2-approximation algorithm exists for the case when k = 3,
and it is tight assuming the Unique Game Conjecture [7]. It is unknown if LINEARKCUT is tractable.
LINEARKWAYCUT is equivalent to finding k nested sets V; € --- €V, =V, such that t; € V; \ V;_; and the
total number of incoming edges to V,..., V, is minimized ( [2] proved k = 3 case). It is not hard to see
that LINEARKWAYCUT is equivalent to RVIO(T; ) and LINEARKCUT is equivalent to SVIO(T;), where T is
the reflexive transitive tournament on k vertices (See Figure 1.1c).

Bicut A set of edges is a st-bicut if removing it disconnects s and t in both ways. That is, there is no
path from s to t nor from t to s. A set of edges is a bicut if it is a st-bicut for some s and t. Finding a
minimum st-bicut is NP-hard but a simple 2-approximation algorithm exists [22]. There is no efficient
(2 — e)-approximation for any constant € > 0 assuming the Unique Game Conjecture [10,43]. However,
it is unknown if finding the minimum bicut is NP-hard. A (2 —1/448)-approximation exists, showing the
problem could be easier than finding a minimum st-bicut [2]. Finding a minimum bicut can be reduced
to SVIO(Hp;eyr), Where Hyey is the graph in Figure 1.1e [2].

1.3 Main contributions

Our main contributions are the following:
e We give an efficient classification of r-tractable digraphs. (Theorem 3.3)

e We show that a reflexive digraph is s-tractable if and only if each of its components is s-tractable.
(Theorem 4.1)

e We make progress on s-tractability for the variety of reflexive finite paths. In particular, we establish
the dichotomy of reflexive trees. (Theorem 5.9)

e We show s-tractability result for star-like digraphs, which shows the first example where r-
tractability is not equivalent to s-tractability and the digraph is weakly connected. (Theorem 6.2)

We show a deterministic algorithm for sS1ZEkCUT faster than the current randomized algorithm [24]
(Theorem 4.4), and we also resolve the complexity of (£, k)CUT and (£, k)WAYCUT (Corollary 5.6).
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Figure 1.1: Various patterns useful in cut problems. All graphs are reflexive. Self-loops are not shown.

2 Preliminaries

The set of positive integers from 1 to n is denoted by [n]. Let G = (V,E) and H = (U, F) be digraphs.
G UH is a new digraph (VUU,EUF). G[V'] is an induced subgraph of G on V’, defined as G[V'] =
v, {eIe CV',ee E}). G is trivial if it does not contain any edge, reflexive if every vertex has a self-loop.
The out neighbors and in neighbors of v are defined as NJ (v) = {u | vu € E} and N; (v) = {u | uv € E},
respectively. The set of all neighborhoods is N; = {Ng(v)Iv IS V} U {NG_(V)|V IS V}. For any set A, we
define the complement characteristic function y4(x) =0 if x € A and 1 otherwise. The universe of 7, is
always non-ambiguous from context. We define hg : V2 — {0,1} as hg = 7. That is, hg(u,v) = 0 if and
only if uv is an edge in G. A problem is polynomial-time equivalent (or equivalent for short) to another,
if there is a polynomial-time Turing reduction between them. We use components in digraphs to refer
to the weakly connected components. The distance between u and v in G, denoted by dg(u, v), is the
length of the shortest path from u to v. The distance d;(u,v) = oo if u cannot reach v. In the entire
paper, k and { are assumed to be constants.

Recall that if a digraph is r-tractable, then it is s-tractable. If it is not sy-tractable, then it is not
s-tractable.

We use n and m to denote the number of vertices and number of edges, respectively, in the input
digraph G.

Let H be a digraph. We always assume there is some total ordering < of the vertices, e.g., based on
vertex labels. A vertex v dominates u if

1. N;(u) € N5 (v) and N (u) S N (v), or
2. N;(u) G N;(v) and N5 (w) € N5 (v), or

3. Ny(w)=N;(v), Nj(w) =N;(v)and u < v.



Domination relation is an inclusion relation of the neighborhoods with ties broken by the vertex total
order. A vertex is a dominated vertex if it is dominated by some other vertex. There is always a minimum
violation surjective map from G to H such that the preimage of each dominated vertex is a single
vertex [19].

We introduce some notions to describe the minimum violation problem in both digraphs and graphs
uniformly. A digraph is symmetric if (u,v) is an edge iff (v,u) is an edge. For simplicity, we formally
define a graph to be a symmetric digraph. However, we will still use standard graph terminology. For
example, removing an edge in a graph is equivalent to removing the two opposing edges (or a self-loop)
in the symmetric digraph. Other notions follow similarly.

If H is a graph, we define SVio,(H) to be SVio(H) but with input restricted to graphs. It is easy to
see that SVIO(H) is tractable if and only if SVio,(H) is tractable. Therefore, in the paper, the input of the
problem SVIO(H) is assumed to be a graph if H is a graph. The same statement holds for every variation
of the minimum violation problem described in this paper.

2.1 Distances and retraction

Let G be a graph, and H a subgraph of G. A homomorphism from G to H is a retraction if it is the identity
function when the domain is restricted to vertices on H. H is a retract of G if there is a retraction from G
to H. H is a isometric subgraph of G if dy(u,v) = d;(u,v) for all u,v € U. Namely, dy = dg|yxp-

Theorem 2.1 For any homomorphism f from G to H, dg(x,y) = dy(f (x), f(¥)).
Theorem 2.2 Let H be a retract of H'. If H' is r-tractable then H is r-tractable.

Proof: Let ¢ be a retraction from H’ to H. Consider an input graph G to RVIo(H), we construct
G =GUH'.

Let f be the optimal solution of RVio(H) with input graph G. f has value a. Let f’ be the optimal
solution of RVIo(H’) with input graph G’. f’ has value a’.

We will show that @ = a’. Construct amap g : V(G) — V(H), such that g(v) = ¢(f'(v)). The map g
is a feasible solution of RVIO(H) because ¢ is a retraction. Since ¢ is a homomorphism, g has violation
no larger than f’, therefore this shows a’ > a. We construct g’ from f such that g’ is a feasible solution
to RVIo(H") with input G’. g'(v) =v if v € V(H’) and g’(v) = f (v) otherwise. The violation of g’ is at
most the violation of f, hence this shows a > a’. O

The (direct) product of two graphs G; = (V,E;) and G, = (V,, E,) is G; X Gy = (V; x V,, E), where
E = {{(uy,uy), (v1,v9)} lu;vq € Eq and u,yv, € E;}. One can generalize it to product of finite number
of graphs. nle(Vi,Ei) = (V,E) where V =V} x--- xV,, and {(uy,...,ux),(vy,-..,v¢)} is an edge if
and only if u;v; € E; for each 1 < i < k. P, is the reflexive path graph of length n, where the vertices
are {0,...,n} and the edges are {{i,i +1}|0 <i <n—1}U{{i} |0 <i < n}. The variety of finite paths,
denoted FP, is the set of retracts of product of finite paths. That is, G € 3P if and only if it is a retract of
l_[f:1 P, for some sequence of non-negative integers ay, ..., a.

Theorem 2.3 ( [32]) Let H € FP. There is a retract from G to H if and only if H is an isometric subgraph
of G.

2.2 Minimum CSP

Our main result on r-tractability requires tools from VCSP theory. In particular, we describe a simpler
special case of VCSB the minimum constraint satisfaction problem (MINCSP). We formally define MINCSP
using the notations in [15]. Note [15] actually defines MAXCSP, but it is equivalent to MINCSP.

Let the domain D be a finite set. The set of all m-ary {0, 1}-valued functions over the domain D is

Rg"). That is, f € jom) if and only if f : D™ — {0,1}. The set of all {0,1}-valued functions over the

7



product space of D is R, = U;olegn). For f € R™, weNand n : [m] — [n], a 3-tuple (f,w, ) is a D"-

D
constraint. A finite set I' C Ry, is a constraint language. We define an instance of the problem MINCSP(T") as
follows. The input consists of an integer n and a sequence of D"-constraints (f;, wy, 1), - - -, (fi, Wi, Tr),

where either each f; €T or f; € Rg)). The case of f; € R([?) allows f; to be a constant. Assume that the
arity of f; is m;. The output of the MINCSP(T') instance is the value of

k
min Zwifi(xﬂi(l),...,xni(mi)).
i=1

(%¢15e-0x,)EDN

For D’ € D and f : D™ — {0, 1}, we define f[D’] to be f|pm. For T a constraint language, we define
I[D’']tobe {f[D’]| f €T}, the constraint language induced on D’. A constraint language T is tractable if
every instance of MINCSP(T') can be solved in polynomial time. The set I, consists of functions obtained
from T by fixing a subset of variables. For example, if f € T" and it is a binary function, then functions of
the form gy (a) = f(a, b) and h,(b) = f(a, b) are in T.. In fact, if ' consists of a binary function h and
some unary functions, then I, also consists of the same binary function h and some (possibly a larger set
of) unary functions.
Let H = (U, F) be a digraph, we define I}; = {hy}.. Observe that

Iy = {hH} U {)ZNI}'(u) | ue U} U {ZNI;(u) | ue U} .

Indeed, for an arbitrary u € U, define the function g,(v) = hy(u,v). We have g,(v) = 0 if and only if
v € N (u). Therefore g, = AN () The case of XN- () can be handled similarly.

Let T be a constraint language on D. Then ¢ : D — D is an endomorphism of T if for every f € T
and f(x) = 0 implies f(¢(x)) = 0. An injective endomorphism is an automorphism. T’ is a core if every
endomorphism is an automorphism. We say a core I is a core of T, if there exists an endomorphism ¢ of
T, such that I" =T[¢(D)].

We state a sequence of theorems.

Theorem 2.4 ( [15]) If constraint language I” is a core of constraint language T, then T” is tractable if
and only if T is tractable.

Theorem 2.5 ([34]) Let the constraint language T on D be a core. T is tractable if and only if T, U
{)Z{a} |ae D} is tractable.

Theorem 2.6 ([15]) T is a constraint language on D. T U {)Z{a} |ae D} is tractable if and only if
T'u{jyy | U C D} is tractable.

The problems in CVIO can be modeled by MINCSP.

Theorem 2.7 ([15]) A digraph H is c-tractable if and only if {hy} U {jy | U € V(H)} is tractable.

Theorem 2.8 Let H be a digraph on vertices D and let T be a constraint language on the domain D consisting
of hy and some unary functions. If T[D’] is a core of T, then T is tractable if and only if H[D'] is c-tractable.

Proof: T'[D’]is a core of T and therefore by Theorem 2.4 and Theorem 2.5, T is tractable if and only if
I.[D']u {)Z{a} | a € D'} is tractable. By Theorem 2.6, I,[D’]U {)Z{a} | a € D'} is tractable if and only if
I.[D'Ju{7y | U C D'} is tractable. Note that T,[D’']Ju{zy | U € D’} = {hy[D']}u{jy | U € D’}. Hence
by Theorem 2.7, T is tractable if and only if H[D’] is c-tractable. O



2.3 c-tractable digraphs

A matrix M is anti-monge if M;  + My ; < M; j+ M, ; forall i <i” and j < j’. The matrix M is permuted
anti-monge, if there exists some permutation 7, such that 7 applied to both the rows and columns, we

obtain an anti-monge matrix.

Theorem 2.9 (Classification of c-tractable digraphs [14,15]) H is c-tractable if and only if the adja-
cency matrix of H is a permuted anti-monge matrix. Moreover, c-tractability can be decided in O(n?) time,
where n is the number of vertices in H.

A set is called a rectangle if it is A x B for two sets A and B such that A C B or B C A. For a n X n matrix,
an L-anchored rectangle is [a] x [b] for some a, b € [n]. An R-anchored rectangle is ([n]\ [a]) x ([n]\[b])
for some a, b € [n].

Lemma 2.10 (Lemma 4.4 [15]) An n x n {0, 1} matrix M without all-ones rows and columns is anti-
monge if and only if the indices of the 1 entries is a union of an L-anchored and an R-anchored rectangles
that are disjoint.

Lemma 2.11 (Lemma 3.3 [36]) Let M and N be two {0, 1}-matrices such that all entries are the same
except one single row (column), such that the row (column) is all 1 in M and all O in N. N is anti-monge if
and only if M is anti-monge.

The reflexive c-tractable digraphs have an easy combinatorial description.

Theorem 2.12 (combinatorial classification of c-tractable reflexive digraphs) Consider a reflexive di-
graph H = (V,E) with S C V the set of vertices with outgoing edges to all vertices, and T C V the set of
vertices with incoming edges from all vertices.

H is c-tractable if and only if there are 4 sets A,A’, B, B’ such that E is the union of disjoint sets A X B,
A’ x B and E’, where

1. if T is non-empty, then E' =V x T and T =V \ (BUB’),

2. otherwise, ‘=S xV and S =V \ (AUA).

Proof: First we prove one direction. Consider a reflexive digraph H = (V, E) where there are 4 sets
A,A’, B and B’ with the desired property, then H is c-tractable.

Let M be the adjacency matrix of H. There is a permutation of M, M’, such that Ax B is an L-anchored
rectangle, A’ x B’ is an R-anchored rectangle. E’ is either the all-ones rows or all-ones columns. By
Lemma 2.11 and Lemma 2.10, we know M’ is anti-monge, and M is permuted anti-monge. Therefore H
is c-tractable.

Now, we prove the other direction. Let H be a reflexive c-tractable digraph and M be the adjacency
matrix of H. Every column has at least one 1. There are two cases, either there is an all-ones column or
there is no all-ones column. We consider the case of having an all-ones column.

We change each all-ones column into an all-zeros column. The new matrix is M’, and has no all-ones
column or rows. By Lemma 2.11, M’ has the permuted anti-monge property. M’ is permuted anti-monge
if and only if we can permute the matrix into the form in Lemma 2.10. Let N’ be such a permuted
matrix. We reverse the change of the all-ones columns in N’, which must consist of all columns indexed
by T =V \ (BUB’) due to the fact every column has at least one 1. Let the new matrix be N. N consists
of 3 different parts, an L-anchored rectangle of the form A x B, an R-anchored rectangle of the form
A’ x B’, and a rectangle E' =V x T.

Otherwise, if there is no all-ones column. We consider the above operation again but using all-ones
rows (if it exists) instead. The only difference is the last rectangle E’ in N is (V \ (AUA)) x V. O



A graph G = (V, E) is a double clique, if there exists A,B C V such that E = (A x A) U (B x B). Next
we use the previous theorem on digraphs to obtain a much simplified characterization for c-tractable
reflexive graphs.

Theorem 2.13 (combinatorial classification of c-tractable reflexive graphs) A reflexive graph H is
c-tractable if and only if it is a reflexive double clique.

Proof: One direction is trivial as adjacency matrix of reflexive double cliques consists of an L-anchored
rectangle, an R-anchored rectangle and some all-ones columns, so it is c-tractable.

The other direction is straightforward but tedious. Let H = (V, E) be a c-tractable reflexive digraph.
S is the set of vertices with outgoing edges to all vertices and T is the set of vertices with incoming
edges from all vertices. If E = V x V then we are done, the two cliques are V and V. Now we
consider when E # V x V. By Theorem 2.12, when H is c-tractable, there are 4 sets A,A’,B, B’ such
that E=(Ax B)U (A’ x B')UE’. Because S = T, there are only two cases. If T is empty, then we have
A=B and A’ = B’ to be the only solution. The desired cliques are A and A’. If T is non-empty, we will
show that ANA’ are the index of all-ones rows. Assume a € ANA’. Consider a b € V, if b € B, then
(a,b) € AxB. If b€ B, then (a,b) € A’ x B’. Otherwise, (a,b) € V x T. On the other hand, if a ¢ ANA,
then there isa b € BUB’ where (a,b) ¢ E. SOANA'=S=T.

If b€ B and (a, b) € E, then a € A. Since (b, b) € E, we also know b € A. This shows B C A. Similarly,
B'CA.

We claim E C (Ax A)U (A’ x A). Note that E=(Ax B)U (A’ x B)U(V x T).

e AXBCAXA,
e A'xB ' CA xA,
e and

VxT
=V x (ANA)
=(AUA) x (ANA)
=Ax (ANA)UA x (AnA))
C(AxA)U(A xA).
We show (A x A)U (A’ x A') C E. Consider (a,b) €A x A.
1. b€ B, then (a,b) €AXB,
2. beT,then(a,b)eV xT,
3. beB',thenbeANA =S,s0(a,b)eSx V.
One can show the above for (a, b) € A’ x A'. This shows (A x A)U (A’ x A") C E. Therefore A and A’ are

the desired cliques. O

3 Classification of r-tractable digraphs

In this section, we characterize the r-tractable digraphs by giving a simple condition that can be checked
in polynomial time. The idea is to reduce r-tractability to c-tractability. One can observe RVio(H) and
MINCSP(I;) are equivalent problems. The proof is just a direct translation between terminologies.

Theorem 3.1 For a digraph H, RVIo(H) and MINCSP(Iy;) are equivalent problems.
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Proof: Let H = (U,F). Let G = (U UV, E) be the input to RVIo(H), here UNV = {. Also, we assume
V =[n]. That is, the non-fixed vertices in G are integers from 1 to n. Assume G is simple, and there is a
weight function w on the edges. Let f be a minimum violation map from G to H.

We construct an instance of MINCSP(I;). Let 7., be the function 7., (1) = u and 7,,(2) = v, which
simulates the edge uv. We define 7, to be the function 7, (1) = v, which can be used to simulate both
edges of the form uv and vu, where u € U. r is a function of 0 arity.

1. For each edge uv € E where u,v € V, we create a tuple (hy, w(uv), m,,).

2. For each edge uv € E where u € U and v € V, we create a tuple ()?Ng(u),W(UV), T,).
3. For each edge vu € E where u € U and v € V, we create a tuple ()ZNI;(u)’W(VU), T,).
4. For each edge uv € E where u,v € U and uv € F we create a tuple (1, w(uv), ).

Let the instance consist of all the tuples above and n. It is not hard to see the optimal value of the
instance is equal to the minimum violation of the optimal f.

The above construction can be reversed to build input digraph G and its weight. Indeed, for example,
we can replace (hy, w, 7, ) with an edge with weight w from u to v in digraph G. O

To study the tractability of I};, we need to introduce the notion of apex vertices. A vertex v is an
apex if no vertex dominates v. The set of apex vertices is the apex set. Consider a digraph G = (V, E)
with apex set A. G[A] is the apex subgraph. The apex map a is the following vertex map.

v ifveA
a(v) = . . .
u if u € A and is the smallest vertex that dominates v

Elem et al. observed that, in our terminology, an undirected graph with a reflexive complete graph as
its apex subgraph is r-tractable [ 19]. Reflexive complete graphs are c-tractable. It is natural to conjecture
that if the apex subgraph of a digraph is c-tractable, then the digraph itself is r-tractable. We will show
that it is both necessary and sufficient.

Recall, that, by Theorem 3.1, we are interested in the tractability of I;. To this end, we find the core
of I;. The next lemma shows that the core of I}; is induced on the the apex set of H.

Lemma 3.2 Let H = (V, E) be a graph and A be the apex set of H. Then T';[A] is the core of Ty.

Proof: Let a be the apex map of H. Clearly, A= a(V).

First, we show that a is an endomorphism of I;. v is dominated by a(v) and v € N (u) implies
a(v) € N (u). Therefore a is an endomorphism for AN () for all u. Similarly it is an endomorphism for
all AN () for all u. For each edge uv in E, v € N;(u) implies a(v) € N, (u). Therefore ua(v) € E. Apply
the same argument for u, we get a(u)a(v) € E. a is therefore an endomorphism for hy;.

Second, we show I;[A] is a core. Consider an endomorphism g : A — A of I'y[A]. Consider
an arbitrary u € A. For each v € V, if u € N;;(v), then g(u) € N;(v) NA. Indeed, this is because
g(W) € In-(»[Al. Similarly, if u € N (v), then g(u) € N (v)NA. Let B, = {BIB€Ny,u€B}NA.
Note that by definition g(u) € B,,. But B, consists of precisely the single element u, since B, consists of
elements that have neighborhoods containing the neighborhoods of u. Thus we have g(u) = u for all
u € A, therefore g is an automorphism of I;[A]. O

Theorem 3.3 (classification of r-tractable digraphs) A digraph H is r-tractable if and only if its apex
subgraph is c-tractable. Moreover, r-tractability can be decided in polynomial time.
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Proof: Let A be the apex vertices of H. By Lemma 3.2, Iy[A] is the core of [};. By Theorem 2.8, we have
H is r-tractable if and only if H[A] is c-tractable. Finding A is equivalent to finding the vertices with
maximal neighborhood. For a graph on k vertices and £ edges, a O(k{) time algorithm exists for finding
the set of maximal neighborhoods [51]. Since A can be found in O(nm) time, and c-tractability can be
decided in O(n?) time [14, 15]. We can decide if H is r-tractable in O(nm) time. O

Remark There is no forbidden graph characterization for r-tractable digraphs. One can modify any
graph by adding a single vertex that incident to all other vertices. The new graph is r-tractable because
the apex subgraph is a single vertex.

As an application of the theorem, we show the following two results on r-tractability which we also
use later. In particular, the one on By, can be used for hardness of (£, k)WAYCUT.

Corollary 3.4 S, is r-tractable if and only if k < 2.

Proof: The apex subgraph of Sy is itself. By applying Theorem 3.3, we just have to show the c-tractability
of Si. All permutations of the adjacency matrix of S, are essentially the same: one column and the
diagonal consists of all 1, all other entries are 0. By Lemma 2.11, we can replace the entries of the 1
column to all Os. It’s easy to see that except for S; and S,, the 1 entries cannot equal to a union of an
L-anchored and an R-anchored rectangle. We obtain the corollary by Lemma 2.10. O

Corollary 3.5 By is r-tractable if and only if k =2 and { <4, or k >3 and { < 3.

Proof: By Theorem 3.3, we have to find for which k and ¢ the apex subgraph of By, is c-tractable. The
apex subgraph of By is By y_,. By Theorem 2.13, we can see that B, , is a path of length 2, a double
clique. By ; is is a clique of size k. No other By, is a double clique. O

4 s-tractability of disconnected reflexive digraphs

In this section, we show that the s-tractability of a reflexive digraph is determined by the s-tractability of
its components. There were no general techniques to show a digraph H is s-tractable beyond showing H
is r-tractable. But s-tractable graphs are much richer. The first result in this area is the solution to the
k-cut problem, which demonstrates a reflexive graph that consists of k isolated vertices is s-tractable.
Here we extend the result. If each component of a reflexive digraph is s-tractable, then the digraph is
s-tractable. The converse is also true. We introduce the main theorem established in this section.

Theorem 4.1 A reflexive digraph H is s-tractable if and only if every component of H is s-tractable.

We demonstrate a polynomial time algorithm for SVio(H) knowing that each component of H is
s-tractable. We use the fact that the minimum violation can be bounded by the value of a min-k-cut, and
partitions with value no more than min-k-cut can be found effectively.

Recall a k-cut is a set of edges such that after its removal, the graph has at least k components. Let
A« (G) denote the weight of the minimum k-cut in G.

Theorem 4.2 ([11]) Given a graph G of n nodes and m edges. There are O(n®*~1) partitions with value
no larger than A, (G). Such partitions, together with their values, can be computed in O(mn2*=1) time.

Gupta, Lee and Li showed the number of partitions with value no larger than A, (G) is n(1:981+°(Dk and

subsequently improved it to nk200°g logn)* 126, 271. Recently with the addition of Harris, the optimum
O(n*) bound was established [25]. The partitions can also be found in the same time using a randomized
algorithm. However, the deterministic algorithm in the above theorem is not able to obtain the same
result.
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Theorem 4.3 If each component of a reflexive digraph H is s-tractable then H is s-tractable.

Proof: Let H = (U,F) be a k vertex digraph consisting of components Uy,...,U,. For each i, let
H; = H[U;]. Assume SVIO(H;) can be solved in T;(n) time for graphs of size n for some polynomial T;.
Let G = (V,E) be a digraph. Consider a minimum violation surjective vertex map f : V — U from G to
H. Define V; = f~1(U;). The edges crossing the t-partition P = (Vy,...,V,) are violated edges of f. Let
G’ be the graph where we undirect each edge in G. The total weight of the edges crossing P in G is at
most the weight of the min k-cut of G’. In particular, by Theorem 4.2, a collection X of partitions where
P is one of them can be found in polynomial time.

For (V1,...,V,) € X, we solve SVIO(H;) on G[V;] to obtain f; in O(T;(n)) time. Gluing together f; in
the natural way gives us a candidate solution. We return the candidate with the minimum violation. The
total running time is therefore O(mn?*—1) 4 p2k-1) Zle T;(n)), which is a polynomial. O

As a consequence, we obtain a faster deterministic algorithm for sS1ZEkKCUT.

Theorem 4.4 Lets = (sq1,...,5¢) and s; = s;4; for all i < k —1. sS1ZEkCUT for graph G can be solved in
O(mn®°=V) time, where o = Zle s; and n is the number of vertices of G.

Proof: Let o0’ = o—s,. Assume that n is at least s; (0’ + 1), otherwise brute force takes O(1) time because
both ¢’ and s; are constants. We show that the value of the min s-size k-cut is at most the value of a
min-(o’ + 1)-cut when n > s;(o” + 1). Consider any (¢’ + 1)-cut with vertex partition V;,...,V,,;, each
has size ny,...,n,,, respectively. Assume that n; > n;,; for all i. We will find a k-partition (U, ..., Uy)
that induces a s-size constrained k-cut. By the pigeonhole principle, |V;| > s;. Let U; = V;. We consider
an arbitrary partition of the remaining o’ sets into k — 1 partition classes, such that the ith partition
class contain s;; of the sets. This is feasible since o’ = Zf:z s;. Let U;,; be the union of the sets in the
ith partition class. The resulting {Uy, ..., U} induces a s-size k-cut that only uses edges in the minimum
(o’ + 1)-cut. Hence we have shown that the minimum s-size k-cut is bounded above by minimum
(o’ + 1)-cut. Therefore, by Theorem 4.2, the optimal partition is one of the O(n?(°~1)) k-partitions that
can be computed in O(mn* 1)) time. It takes O(k) = O(1) time to verify if the k-partition is a s-size
k-partition. Hence the total running time is O(mn2@=1), O

One can show the converse of Theorem 4.3.

Theorem 4.5 If any component of a reflexive digraph H is not s-tractable, then H is not s-tractable.

Proof: Consider H = (U, F) consisting of k components. The components are subgraphs Hy, ..., Hy.
The vertices in H; is U;.

We want to reduce SVIO(H;) to SVIO(H) in polynomial time. Let the input of SVIO(H;) be G; =
(V1,Eq). Let M be a value larger than the sum of weights of edges in G;. We create digraph G that is the
union of G; and G, ..., Gy. Here for i > 2, G; and H; are exactly the same digraph except each edge in
G; have weight M. We will use V; to denote the vertices in G;, although it is clear that V; = U;. If there is
a surjective map f; of violation t from G; to H;, then there is a surjective map f of violation t from G to
H. Indeed, we extend the map f; to f, such that f |y, is the identity function. We want to show this is
true in the other direction. That is, if there is a minimum violation surjective map f of violation t from G
to H, then there is a surjective map f’ of violation at most t from G to H;.

For a surjective map f from G to H, an index i is good if f (V;) = U; and f ~!(U;) = V;, otherwise it
is bad. If f* is a minimum violation surjective map from G to H with no bad indices, then f*|y, is the
minimum violation map from G; to H;. We will show that there always exists an optimal surjective map
with no bad indices. We show that if f has at least one bad index, then there exists an optimal solution
with strictly fewer bad indices.
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First, the number of bad indices cannot be 1. Let i be a bad index. If f(V;) \ U; is non-empty, then
f(V;)NU; is non-empty for some j # i, and therefore j is a bad index. If U; \ f(V;) is non-empty, then
f~Y(U,) # V;. There is some j # i such that there is a vertex v € V; and f(v) € U;. Hence j is a bad
index. In either case, there are at least two bad indices.

Any optimal solution to SVIO(H) has violation smaller than M. Indeed, a map that acts as an identity
map G; to H; for all i > 2 has violation smaller than M. Let f be a minimum violation map from G to
H. Let B be the set of bad indices of f. If B is empty, then we are done. Leti € B and i # 1. Such i
must exist, since |B| > 2. No edge in G; can be a violated edge, since it would incur violation at least M.
Therefore, f(V;) is contained in one of Uy, ..., Uy.

Case 1: f(V;) C U;. Pick j € B such that j # i. Let u be any vertex in U;.

v ifveV;
fM)=1u ifve f(U)\V;
f(v) otherwise

We show that any non-violated edge with respect to f is also an non-violated edge with respect to f’. An
edge not in G; maps to an edge not in H; under f, and still maps to the same edge under f’. If an edge
not in G; maps to an edge H; by f, then it maps to a self-loop of u under f’. An edge in G; maps to an
edge in H; under f’. The violation of f’ is no larger than the violation of f. Also, i is not a bad index for
f’. No new bad index was generated in the process. The number of bad indices for f’ is strictly smaller
since i is no longer in B.

Case 2: f(V;)NU; =40.

v ifvey,
fFM=1f0W) ifvef(U)
f) otherwise

A similar argument as case 1 holds. The number of bad indices for f” is strictly smaller than the number
of bad indices for f. We have to argue that the non-violated edges not in G; that gets mapped to H; are
still non-violated. Indeed, if uv is an edge, then f (u)f (v) is an edge for all u,v € V;. Now if f(a)f (b) is
an edge in H; then a, b € f~1(U;). If additionally ab is an edge in G, then f(f(a))f(f (b)) is an edge.
We showed we can find an optimal mapping with strictly smaller number of bad indices. Hence there
exists an optimal mapping with no bad indices. O

The exact same proof also shows that if any component of H is s-intractable, then H is s-intractable.

5 s-tractability for variety of finite paths and dichotomy of trees

In this section we show that if H € FP, then SVIo(H) is intractable if diam(H) > 5, or at least 3 vertices
has pairwise distance 4. Every reflexive tree is a variety of finite paths [32], the result is used to show a
s-tractability dichotomy theorem for reflexive trees. The reduction is not a direct one. It relies on the
intermediate results on (£, k)WAYCUT and existence of c-connectors, which we will describe first.

5.1 c-connector

We first introduce c-connectors, which is a useful tool to force some vertices to have a certain distance.

Definition Let ¢ : U? — {¢,{+1} and £ > 3. A graph G = (V,E) is a c-connector if U C V, and the
following distance properties hold.

1. dg(x,y) = c(x,y) for all distinct x,y € U,

2. dg(x,y)<({forall x,y € Vsuchthat x e V\U
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Theorem 5.1 For any c : U? — {{,£ + 1} such that c(x, y) = c(y, x) and £ > 3. There exists a c-connector
of O(£|U|?) vertices and edges.

Proof: Let k =|{/2]|—1. Note that k + 3 < { for £ > 3. We build the c-connector base graph G = (V, E)
using the following construction. For each vertex u € U, we create a path with a sequence of vertices
up, . .., Uy, where uy = u and all other vertices are new. These vertices are U’ = {u;lu € U,0 <i < k}.
For each u € U, create a star centered at u;, with new vertices u, for each v € U and v # u. Finally, we
add a vertex p where p is adjacent to each vertex u, for distinct u,v € U.

See Figure 5.1a for an example of the c-connector base.

Observe we already have some nice properties for the c-connector base G.

o de(p,v)<k+2</(forallveV.

o do(u,,w,)=2</{foru,v,w,x €U.

e dg(ujuj))<j—i<k<{forueUand0<i,j<k.
o d;(u,v,)<k+3<{foruv,wel.

We will construct a c-connector H by adding edges to G. If { is odd, then H is obtained from G by
adding edges u, v, if c(u,v) = £. If £ is even, then H is obtained from G by adding edges u, v, where
c(u,v) ={, and adding edges u, v, if c(u,v) =£ + 1.

This establishes dy; < d;. Each newly added edge incidents to some vertex u;, where u € U, or u,
where u,v € U. Therefore, every path in H containing u € U either contains uy, or it consists of only
Ug,...,u; for some i < k. In particular, this shows dy(a,u;) < dy(a,u) fora € V\U’ and u € U. Together
with the distance facts of G, this shows that dy(u,v) </ forallu €V and v € V \ U. Therefore, in order
to show H is a c-connector, we just have to show dy(u,v) = c(u,v) foru,v € U.

Now, we argue depending on the parity of £ by consider distinct u,v € U.

¢ > 3 and is odd. Any path from u to v must contain ug,uy, ..., U, U, and vy, v, ...,V for some x
and y, which shows dy(u,v) = £. If c(u,v) =€ + 1, then dy(u,v) = £ + 1 = c(u, v) since there does not
exist x and y such that u, v, is an edge. If c(u,v) = ¢, then dy(u,v) = £ = c(u, v) since there is a path
Ug, Uy, Vy, Vi
¢ > 4 and is even. Any path from u to v must contain ugy, uy, ..., u; and vy,..., vy. If c(u,v) = ¢, then
there is a path from v, and uy using uy, u,, v¢. This is the shortest u;-v; path, since there is no edge u; .
This shows dy(u,v) = c(u,v). If c(u,v) = £ + 1, then there is a path from v, and u; using uy, u,, v, V-
There is no shorter path, since there is no edge u; v, and all neighbors of u; is not a neighbor of v;.
Therefore we have dy(u,v) = c(u, v).

It is clear the number of vertices and edges in H is O(£|U|?). O

5.2 ({,k)WAYCUT and By,

In this section, we show that (£, k)WAYCuT and ({,k)CUT are equivalent problems. Then, we show
RVIO(By¢) and (£ — 1, k)WAYCUT are equivalent.
This is the first time we demonstrate the use of c-connector.

Theorem 5.2 (¢, k)WAYCUT and (¢, k)CUT are equivalent for £ > 3.
Proof: In the easy direction, (£, k)CUT reduces to (Z) instances of (£, k)WAYCUT. We consider the harder

direction. Let G = (V,E) be the graph and T the set of terminals. Consider a c-connector H with
¢:V? > Nsuchthat c(u,v) =0+ 1ifu,v € T and c(u,v) = £ otherwise. Let G’ = G U H, where the
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(a) The connector base for k = 2. (b) The case where ¢ = 6. (c) The case where { = 7.

Figure 5.1: The c-connector for the specific example of 3 nodes u,v,w and c(u,v) = c(v,w) = £ and
c(u,w)=£¢+1.

edges in H has infinite capacity. We show that every finite value (£, k)-cut in G’ is a (£, k)-way-cut in G,
and every (£, k)-way-cut in G is a (¢, k)-cut in G'.

A finite value (¢, k)-cut C’ in G’ only use edges in E. Since dg_g(u,v) = £ unless u,v € T, we have
(+1=dg_c/(u,v) <dg_c/(u,v) forallu,v € T, and it shows C’ is a (£, k)-way-cut in G.

Let C be a (¢, k)-way-cut in G. Consider dg/_(u, v) for distinct u,v € T. Consider a shortest uv-path
P in G’ —C. There are two cases. If P contains no edge in H, then dg/_(u,v) = dg_c(u,v) =L+ 1. If P
contains an edge in H, then it has to contain a path P’ between two vertices in V using only edges in H.
Note length of P’ is at least £, and if P’ has length £, then it cannot be a uv-path since dy(u,v) =£+ 1.
Hence we have dg_(u,v) > £. Together, we have dg._(u,v) = £ + 1 for all distinct u, v € T, therefore
Cisa({,k)-cutin G’.

There always exists a finite value (£, k)-cut (i.e. E). This shows (£, k)WAYCUT reduces to (¢, k)CuT. O

Note that By y € J'P for all k,£. Indeed, when { is even, By, is a tree, and trees are in J'P [32]. When
¢ is odd, then it takes a bit more to see. Let £’ =[{/2]. Consider H = ]_[i.;l Py.. By, is an isometric

subgraph of H. In particular, let w; ; be the tuple in {0, 1,...,0 }k that is 0 at all coordinates except the
ith coordinate has value j. By, is isomorphic and isometric to the induced subgraph of H on vertices
{wili<i<k1<j<t}

We name the leaves of By, as t, ..., t; in order to refer to them easier.

Theorem 5.3 RVIO(By ) reduces to ({ — 1, k)WAYCUT.

Proof: Let G = (V,E) be the input graph to RVIO(By ;). Let M be a value strictly larger than the total
weight of the edges of G. We take G’ = G U By ;, where the edges in By , has weight adjusted to M. Let
the terminals in G’ be t; for all i € [k].

Let o’ be the value of the minimum (£ — 1, k)-way-cut in G’. Let a be the optimal violation for
RVIO(By ) with input G. We show that a’ = a.

Consider a minimum (¢ — 1, k)-way-cut C in G’. It does not contain edges in Byy. dg—c(t;, t))=1{
for all i # j. The unique path in By is a shortest t;t;-path, and By, is a subgraph of G’ — C because it is
a subgraph of G’ — E. This shows By, is an isometric subgraph of G’ — C. Hence there is a retraction
from G’ — C to By, by Theorem 2.3. The minimum violation map has violation at most weight of C.
Therefore a’ > a.

Consider a minimum solution f of RVIo(By ) with input G. Consider when all violated edges are
removed, the distance between ¢; and ¢; is at least £ due to Theorem 2.1. The violated edges of f form
an (¢ — 1)-length-bounded k-way-cut in G’. Hence a > o’. O

16



Theorem 5.4 (¢ —1,k)WAYCUT reduces to RVIO(By ;).

Proof: Let G = (V, E) be the input graph to (£ —1, k)WAYCUT, and T = {t,..., t; } be the set of terminals.
Let the optimal solution to (¢ — 1, k)WAYCUT be C, and it has value a.

Let G’ be obtained by identifying G with By ,. That is, take the disjoint union of G and By, and
identifying t;,...,t; with terminals of G. Let f’ be the solution to RVIO(By ;) with input G’. f’ has
violation a’. Let C’ be the violated edges.

We show that @ = a’. C’ is a ({ — 1,k)-way-cut of G. Indeed, this is because dg_c/(t;, tj) =
dg—c/(t;, t;) = €. Hence this shows a’ > a. We show G’ — C has a retraction to By, by showing By,
is an isometric subgraph of G’ — C. Consider two vertices u, v in By, and let P be a path between
u and v and is in G’ —C. P can either consists of only edges in By, or it consists of edges outside
By . If P consists of edges outside of By, it contains a subpath that start from ¢; and end at t; for
some i # j and containing only edges in G — C. This P has length at least £. Hence this shows
dBu(u, v)=>do_c(u,v) = min(dBu(u, v),0)= dBk,l (u,v). Hence By, is an isometric subgraph of G’ —C.
This shows a > a’. O

Theorem 5.5 (¢ —1,k)WAYCUT is equivalent to RVIO(B ).
Corollary 5.6 (£,k)WAYCUT and (£, k)CuUT are tractable if and only if k =2 and { <3 ork >3 and { < 2.

5.3 Variety of finite paths and trees

In this section, we make progress on the s-tractability of H € FP using distance information. The results
are sufficient to show dichotomy of s-tractability for reflexive trees.

Theorem 5.7 Let H € FP. H is s-intractable if
1. diam(H) =5, or
2. diam(H) = 4 and there are 3 distinct vertices with pairwise distance 4.

Proof: We first sketch the idea of the proof. Let £ = diam(H) — 1. If £ > 4, we reduce (£, 2)WAYCUT to
SVIo(H). If £ = 3 and we have 3 distinct vertices with pairwise distance 4, we reduce (3, 3)WAYCUT to
SVIo(H). By Theorem 5.3 and Corollary 3.5, (£,2)WAYCUT for £ > 4 and (3, 3)WAYCUT are NP-hard.
Therefore SVIo(H) is NP-hard.

The proof for both cases are identical. In fact, we consider the more general case of (£, k)WAYCUT
where there exists k vertices with pairwise distance £ + 1 in H = (U, F), and £ + 1 = diam(H ). Let those
k vertices be T.

Let G=(V,E) and T CV be the input to (£, k)WAYCUT. We assume |V| > k. Let M be a value more
than the total weight of the edges of G.

Let G; = (V;,E;) obtained by taking union of G and H (note they share terminals T). Define a
function ¢ : V; x V; — {{,£ + 1}, where c(u,v) = max({,dy(u,v)) if u,v € U. Otherwise, c(u,v) = £.
Let G’ be the graph obtained by taking the union of G; and a c-connector, and all the edges in the
c-connector and H has weight M.

Let f be the optimal map for SVio(H) with input graph G’, and it has value a’. Let C be the set of
violated edges of the map f. C does not include any M weight edges, since G’ —E is a feasible solution.
Let the value of the minimum (¢, k)-way-cut of G be a.

First, we want to show C is a (£, k)-way-cut of G with terminals T. For a graph G, the set of diametral
pairs DP(G) is {{x,y}|x,y € V(G),ds(x,y) = diam(G)}. Because G’ — C contains the c-connector,
DP(G’—C) C DP(H). f is a surjective homomorphism from G'—C to H, so dg/_(x, y) = dy(f (x), f (),
and therefore |[DP(G’ — C)| = |DP(H)|. Together it shows DP(G’ — C) = DP(H). For each distinct pair
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x,y €T, {x,y} € DP(H) = DP(G' — C), so dg_c(x,y) = dg_c(x,y) = £ + 1. Therefore, C is a
(¢, k)-way-cut of G and o’ > a.

Now, we show a > a’. Let C be an (£, k)-way-cut in G. We have to show that G’ — C has a surjective
homomorphism to H. Let U be the vertices of H. We obtain this by showing dq._(u,v) = dy(u,v)
for all u,v € U, which shows H is a isometric subgraph of G’ — C. Note because we already had a
copy of H, and paths through the c-connector does not affect distance no larger than £ + 1, hence
de—p(u,v) = dy(u,v) for u,v € U. Assume dg/_(u,v) < dy(u,v), this implies the shortest path from
u to v using some edges in E \ C. However, any simple path that uses edges in E \ C must go through
pairs of distinct vertices x,y € T. Therefore, the shortest path has length at least £ + 1, and it shows
(+1<dg_c(u,v) <dy(u,v) <{+1, acontradiction. Hence we have dg_.(u,v) = dy(u,v) for all
u,v € U, namely H is an isometric subgraph of G’ — C. Therefore G’ — C has a retraction to H, and
a>d. O

Next, we show all diameter 3 graphs in JP is r-tractable.

Theorem 5.8 H € FP is r-tractable if diam(H) < 3.

Proof: H is a retract of the product ]_[f:1 P5 for some k. By Theorem 2.2, we need to show the theorem

is true for ]_[f:1 P;. The apex subgraph of ]_[f:1 P, is a single clique. Hence by Theorem 3.3, H is
r-tractable. U

The above two theorems leaves an interesting gap for s-tractability, the cases where the graph in P
has diameter 4 but without any triple of vertices with pairwise distance 3. Fortunately, if we restrict to
trees, such graphs are very simple. We conclude with a dichotomy theorem for reflexive trees.

Theorem 5.9 (s-tractable dichotomy for reflexive trees) Let T be a tree, then

1. T is s-tractable if and only if it is r-tractable.
2. T is s-intractable if and only if it is r-intractable.
3. T is s-tractable if and only if diam(T) < 4 and there is no 3 distinct vertices with pairwise distance 4.

Proof: If T has diam(T) > 5, or diam(T) = 4 and there are 3 distinct vertices with pairwise distance 4,
then it is s-intractable by Theorem 5.7, which implies T is r-intractable. Otherwise, if T has diameter at
most 3, then it is r-tractable by Theorem 5.8, which implies T is s-tractable.

The remaining case is when diam(T) = 4 and no 3 distinct vertices has pairwise distance 4. We claim
this case is also r-tractable.

Consider any diametral path P of T with the sequence of vertices vy, vy, V3, V4, V5. We claim T is a
union of 3 stars centered at v, v3 and v,. It is clear such graph satisfies the desired condition.

We show T must be of this form by proving the following simple statements.

1. v; and v5 must be leaves: If v; or v5 are not leaves, then there exists a path of length 5, a
contradiction.

2. every simple path of length 2 not intersecting P from v, must end in v,4: If the path ends in v # vy,
then d(v, vs) = 5, a contradiction.

3. every simple path of length 2 not intersecting P from v, must end in v,: Similar to above.

4. every simple path of length 2 not intersecting P from v; must end in v; or vs: If the path ends in
v & {vi,Vs}, then dr(v,v;) = dr(v,vs) = dr(vy, vs), a contradiction.

The apex subgraph of T is the path v,,v3,v,4, which is a double clique. By Theorem 3.3, T is
r-tractable. O
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(a) A simple star-like digraph. (b) A more complicated star-like digraph.

Figure 6.1: Example of star-like digraphs. There can be arbitrary edges between vertices in B. There can
also be edges from every vertex in A to some subset of vertices in B.

6 Star-like digraphs

In this section, we show that star-like digraphs are s-tractable. As a consequence, it shows S is s-tractable
for all k. Because S5 is both weakly-connected and not r-tractable by Corollary 3.4, it is the first example
where one cannot use Theorem 3.3 or Theorem 4.3 to infer s-tractability.

Definition A reflexive digraph is a star-like digraph, if the vertices can be partitioned into 3 sets, A, B
and {c}, such that there are no edges between vertices in A, ac is an edge for all a € A, bc and cb are
edges for each b € B, and for each b € B, one of the following properties hold.

e For all a €A, ab is an edge and ba is not an edge in H.

e For all a € A, both ab and ba are not edges in H.

We emphasis that A and B are allowed to be empty. One example of star-like digraphs is a reflexive graph
where each edge is either an edge to the center, or an undirected edge with the center as an endpoint
(See Figure 6.1a). S, is the special case where there are no undirected edges. A more general star-like
digraph is shown in Figure 6.1b.

A k-subpartition of a vertex set V is a k-partition of some subset of V. The value of a k-subpartition
is the sum of incoming edges to each set in the k-subpartition. The minimum k-subpartition problem
takes an input graph G and returns a minimum value k-subpartition. A k-subpartition is U-avoiding, if
each subset in the k-subpartition is disjoint from U.

Lemma 6.1 A minimum value U-avoiding k-subpartition can be found in polynomial time for fixed k.

Proof: Consider the input digraph G = (V,E) and U C V. Let M be a value that is greater than the
total weight of edges in G. For each v € V and u € U, we add vu as an weight M edge. Let this new
graph be G’. Each non-U-avoiding k-subpartition has weight more than M in G’. Let PP be a U-avoiding
k-subpartition. In both G’ and G, P has the same value. Hence the minimum value k-subpartition in
G’ is a minimum value U-avoiding k-subpartition in G. Berndth and Pap showed the minimum value
k-subpartition can be found in polynomial time for fixed k [4]. O

Theorem 6.2 Star-like digraphs are s-tractable.

Proof: Let G = (V,E) be the input digraph to SVio(H) with n vertices and m edges. H = (U,F) isa
star-like digraph with the A, {c}, B vertex partition in section 6. Let the vertices in A= {a,,...,a;}, and
vertices in B = {by,..., by}. Assume some total order of the vertices so that c is the smallest element. By

definition, ¢ dominates all other vertices in B. Hence, there exists an minimum violation surjective map
f, where |f~1(b)| =1 for all b € B.
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Table 2: Known results for 3 vertex reflexive digraphs. We omit non-weakly connected digraphs and
digraphs that can be obtained by flipping the orientation of each edge.

Pattern digraph s-tractable? comment

mo ? Linear 3-cut

O >C > No non-transitive reflexive tournament [42].

FaY

O/:\O Yes r-tractable
FaY

O/V\AO Yes r-tractable

O : O : O Yes r-tractable

OoO—0O0—>0 -
O_>O<_O Yes r-tractable, double cut
O >C) Yes r-tractable

O

Yes r-tractable

If A= (), the apex subgraph of H is a single vertex c. H is r-tractable by Theorem 2.12, which implies
H is s-tractable. Otherwise, let T be a set of £ + 1 elements, which consists of f ~*(B) and an arbitrary
element v € f1(c).

Let w be the total weight of the edges of the form f~1(b)f ~!(b’), where bb’ is not an edge in H
and b, b’ € B. For each b € B such that it is not incident to any vertex in A, we reorient every incoming
edge of f~1(b) in G to an outgoing edge. That is, if xf~(b) is an edge, we remove x f ~!(b) and add
f~1(b)x with the same weight.

Let the new digraph be G’. We compute a T-avoiding |A|-subpartition in G’ in polynomial time by
Lemma 6.1. Let the weight of this solution be w’. Let the subpartitions be V;,...,V,, and we define a
vertex map h: V — U as follows.

a; lf Ve ‘/l
h(v)=1 f(v) ifverT
c otherwise

This would obtain a vertex map h with violation w+w’. The violation of h is no larger than f. Hence,
we can try all possible choices of T, and return the minimum solution. There are O(n‘*1) choices, so we
run a polynomial number of polynomial time algorithm, which gives us a polynomial running time. O

7 Conclusive Remarks

Our paper introduces a systematic study of r-tractable and s-tractable digraphs. We give a complete
resolution of r-tractability. However, s-tractability is much harder to work with. The classification of
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s-tractable reflexive digraphs on 3 vertices is still open. The state of the art is documented in Table 2.
The remaining 3 unclassified patterns are all r-intractable and sj-tractable. Hence new techniques are
required. It would be interesting to see if there are other cut problems that can be modeled by this
framework.
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