
Minimum violation maps and their
applications to cut problems

Ken-ichi Kawarabayashi, Chao Xu
March 4, 2022

University of Electronic Science and Technology of China



Map that preserve graph structure

A map from G = (V, E) to H = (U, F) is a function f : V → U. H is
the pattern graph.

A map is a (graph) homomorphism, if uv ∈ E then f(u)f(v) ∈ F.

GG HH

1



Map that preserve graph structure

A map from G = (V, E) to H = (U, F) is a function f : V → U. H is
the pattern graph.

A map is a (graph) homomorphism, if uv ∈ E then f(u)f(v) ∈ F.

GG HH

1



Map that preserve graph structure

A map from G = (V, E) to H = (U, F) is a function f : V → U. H is
the pattern graph.

A map is a (graph) homomorphism, if uv ∈ E then f(u)f(v) ∈ F.

GG HH

1



Graph homomorphism model other problems

Fix a pattern graph, is the graph homomorphism problem hard?

Is the graph 3-colorable?

Graph homomorphism is NP-hard.

2



Graph homomorphism model other problems

Fix a pattern graph, is the graph homomorphism problem hard?

Is the graph 3-colorable?

Graph homomorphism is NP-hard.

2



Graph homomorphism model other problems

Fix a pattern graph, is the graph homomorphism problem hard?

Is the graph 3-colorable?

Graph homomorphism is NP-hard.

2



Graph homomorphism can be easy (even with constratints)

The graph homomorphism problem for any graph with a
self-loop is trivial: map all vertices to a vertex with self loop.

Does the graph have 3 components?

* additional surjectivity is required.

3



Graph homomorphism can be easy (even with constratints)

The graph homomorphism problem for any graph with a
self-loop is trivial: map all vertices to a vertex with self loop.

Does the graph have 3 components?

* additional surjectivity is required.

3



Measure how far away from homomorphism

The edge not mapped to an edge is a violating edge.

GG HH

The violation of a map is the number of violating edges.
4



Surjective Minimum Violation. SVIO(H)
Input: G = (V, E).
Output: A surjective map from G to H with minimum violation.

GG HH

H is s-tractable if SVIO(H) is tractable.

5



Surjective Minimum Violation. SVIO(H)
Input: G = (V, E).
Output: A surjective map from G to H with minimum violation.

GG HH

H is s-tractable if SVIO(H) is tractable.

5



Surjective Minimum Violation. SVIO(H)
Input: G = (V, E).
Output: A surjective map from G to H with minimum violation.

GG HH

H is s-tractable if SVIO(H) is tractable.

5



Surjective Minimum Violation. SVIO(H)
Input: G = (V, E).
Output: A surjective map from G to H with minimum violation.

GG HH

H is s-tractable if SVIO(H) is tractable.

5



Retraction minimum violation. RVIO(H)
Input: graph G and a bijection f′ : V′ → U for some V′ ⊆ V(G)
Output: A map f from G to H such that f|V′ = f′ and the
violation is minimized.

Vertices in V′ are called terminals.

HHGG

f 0f 0

H is r-tractable if RVIO(H) is tractable.

6



Retraction minimum violation. RVIO(H)
Input: graph G and a bijection f′ : V′ → U for some V′ ⊆ V(G)
Output: A map f from G to H such that f|V′ = f′ and the
violation is minimized.

Vertices in V′ are called terminals.

HHGG

f 0f 0

H is r-tractable if RVIO(H) is tractable.

6



Goal: classify the s-tractable and r-tractable
graphs.

6



Why?

For a cut problem, there is usually a pattern graph H, such that

Fixed-Terminal Min Cut ∈ P ⇔ H is r-tractable
Global Min Cut ∈ P ⇔ H is s-tractable

Consequence: A unified tool to quickly decide if a cut problem
is easy or hard by looking at the pattern graph H.

7



Out Results

• Relating r-tractability and s-tractability with various cut
problems.

• A complete classification of r-tractable graphs.
• disconnected reflexive s-tractable graphs are defined by
the s-tractability of its components.

• A complete classification of s-tractability of trees.

Remarks:

• All graphs after this point are reflexive. For simplicity, we
do not draw the self-loops.

• We state theorems for graphs, but there are directed graph
counterparts.

• Our results hold for weighted graphs too. The violation is
the sum of the weights of the violating edges.

8



Out Results

• Relating r-tractability and s-tractability with various cut
problems.

• A complete classification of r-tractable graphs.
• disconnected reflexive s-tractable graphs are defined by
the s-tractability of its components.

• A complete classification of s-tractability of trees.

Remarks:

• All graphs after this point are reflexive. For simplicity, we
do not draw the self-loops.

• We state theorems for graphs, but there are directed graph
counterparts.

• Our results hold for weighted graphs too. The violation is
the sum of the weights of the violating edges.

8



Previous Work

• Classification of s-tractable graphs and r-tractable graphs
was studied under the name “Gc-cut”. [Elem, Hassin &
Monnot 13]

• A more general problem called 0-extension problem was
studied, but only approximation was considered [Calinescu
et. al. 01]

9



Modeling cut problems

9



k-way cut

Problem: Min k-way cut
Input: G and the terminals v1, . . . , vk ∈ V(G)
Output: Find a minimum set of edges F, such that such in
G− F, each pair of terminals cannot reach each other.

10



3-way cut

11



3-way cut

12



k-cut

Problem: min k-cut
Input: G = (V, E)
Output: A minimum set of edges F, such that G− F has at least
k components.

13



k-way cut and k-cut

Ik is the reflexive graph of k isolated vertices.

k-way cut is equivalent to RVIO(Ik).

k-way cut is NP-hard for k ≥ 3. [Dahlhaus et. al. 94]

k-cut is equivalent to SVIO(Ik).

Solvable in polynomial time for every fixed k [Goldschmidt &
Hochbaum 94, Karger & Stein 96].

Theorem
Ik is r-tractable if and only if k ≤ 2. Ik is s-tractable for all k.

14



(ℓ, k)-way-cut

A set of edges F is a (ℓ, k)-way-cut for a set of terminals
v1, . . . , vk, if in G− F, the pairwise distance of the terminals is at
least ℓ+ 1.

(∞, k)-way-cut is the standard k-way-cut.

Problem: (ℓ, k)-way-cut
Input: G, terminals v1, . . . , vk
Output: A minimum cardinality (ℓ, k)-way-cut.

(2, 2)-cut

15



(ℓ, k)-way-cut

A set of edges F is a (ℓ, k)-way-cut for a set of terminals
v1, . . . , vk, if in G− F, the pairwise distance of the terminals is at
least ℓ+ 1.

(∞, k)-way-cut is the standard k-way-cut.

Problem: (ℓ, k)-way-cut
Input: G, terminals v1, . . . , vk
Output: A minimum cardinality (ℓ, k)-way-cut.

(2, 2)-cut

15



(ℓ, k)-way-cut

A set of edges F is a (ℓ, k)-way-cut for a set of terminals
v1, . . . , vk, if in G− F, the pairwise distance of the terminals is at
least ℓ+ 1.

(∞, k)-way-cut is the standard k-way-cut.

Problem: (ℓ, k)-way-cut
Input: G, terminals v1, . . . , vk
Output: A minimum cardinality (ℓ, k)-way-cut.

(2, 2)-cut
15



(ℓ, k)-way-cut

Theorem ([Mahjoub & McCormick 00])
(ℓ, 2)-way-cut is tractable if and only if ℓ ≤ 3.

Theorem
(ℓ, k)-way-cut is equivalent to RVIO(Bℓ,k).

B4,3 B5,3

16



Cut problem in directed graphs

F is a set of edges. F is a

• k-reach-cut, if in G− F, there exists a set of k terminals,
such that every vertex can reach at most one of the
terminals.

In P.
• Linear-k-cut, if in G− F, there are terminals v1, . . . , vk, such
that vi cannot reach vj if i < j. Unknown if NP-hard.

• Bicut, if in G− F, there are two vertices s and t that cannot
reach each other. Unknown if NP-hard.

17



Cut problem in directed graphs

F is a set of edges. F is a

• k-reach-cut, if in G− F, there exists a set of k terminals,
such that every vertex can reach at most one of the
terminals. In P.

• Linear-k-cut, if in G− F, there are terminals v1, . . . , vk, such
that vi cannot reach vj if i < j. Unknown if NP-hard.

• Bicut, if in G− F, there are two vertices s and t that cannot
reach each other. Unknown if NP-hard.

17



Cut problem in directed graphs

F is a set of edges. F is a

• k-reach-cut, if in G− F, there exists a set of k terminals,
such that every vertex can reach at most one of the
terminals. In P.

• Linear-k-cut, if in G− F, there are terminals v1, . . . , vk, such
that vi cannot reach vj if i < j.

Unknown if NP-hard.
• Bicut, if in G− F, there are two vertices s and t that cannot
reach each other. Unknown if NP-hard.

17



Cut problem in directed graphs

F is a set of edges. F is a

• k-reach-cut, if in G− F, there exists a set of k terminals,
such that every vertex can reach at most one of the
terminals. In P.

• Linear-k-cut, if in G− F, there are terminals v1, . . . , vk, such
that vi cannot reach vj if i < j. Unknown if NP-hard.

• Bicut, if in G− F, there are two vertices s and t that cannot
reach each other. Unknown if NP-hard.

17



Cut problem in directed graphs

F is a set of edges. F is a

• k-reach-cut, if in G− F, there exists a set of k terminals,
such that every vertex can reach at most one of the
terminals. In P.

• Linear-k-cut, if in G− F, there are terminals v1, . . . , vk, such
that vi cannot reach vj if i < j. Unknown if NP-hard.

• Bicut, if in G− F, there are two vertices s and t that cannot
reach each other.

Unknown if NP-hard.

17



Cut problem in directed graphs

F is a set of edges. F is a

• k-reach-cut, if in G− F, there exists a set of k terminals,
such that every vertex can reach at most one of the
terminals. In P.

• Linear-k-cut, if in G− F, there are terminals v1, . . . , vk, such
that vi cannot reach vj if i < j. Unknown if NP-hard.

• Bicut, if in G− F, there are two vertices s and t that cannot
reach each other. Unknown if NP-hard.

17



Cut problem in directed graphs

(a) T3, lineat-3-cut
(b) Sk, k = 3, 3-reach-cut

(c) Hbicut, bicut

Previous cut problem is equivalent to SVIO(H) for some
directed graph H.

18



Classification of r-tractable graphs



Start with a harder problem.

18



Cost

Let G = (V, E), H = (U, F). A cost function c : V× U → N assigns
cost c(v,u) to mapping v to u.

The cost of a map f from G to H is∑
v∈V

c(v, f(v))

19



Minimum cost and violation

Problem: CVIO(H)
Input: Graph G and a cost function c.
Output: A map f from G to H that minimizes the sum of
violation and cost.

H is c-tractable if CVIO(H) is tractable.

Theorem ([Deineko et.al. 08])
H is c-tractable if and only if there are two sets A and B such
that A ∪ B = V, and H[A] and H[B] are cliques.

20



Minimum cost and violation

Problem: CVIO(H)
Input: Graph G and a cost function c.
Output: A map f from G to H that minimizes the sum of
violation and cost.

H is c-tractable if CVIO(H) is tractable.

Theorem ([Deineko et.al. 08])
H is c-tractable if and only if there are two sets A and B such
that A ∪ B = V, and H[A] and H[B] are cliques.

20



Minimum cost and violation

Problem: CVIO(H)
Input: Graph G and a cost function c.
Output: A map f from G to H that minimizes the sum of
violation and cost.

H is c-tractable if CVIO(H) is tractable.

Theorem ([Deineko et.al. 08])
H is c-tractable if and only if there are two sets A and B such
that A ∪ B = V, and H[A] and H[B] are cliques.

20



But why do we care about CVIO(H)?

RVIO(H) reduces to CVIO(H).

Fixing vertices using cost.

Input of RVIO(H) is G and f′ : V′ → U.

Input to CVIO(H) is G, c, where c(v′,u) = ∞ if v′ ∈ V′ and
f(v′) ̸= u and 0 everywhere else.

Hope: c-tractable and r-tractable are the same?

Nope: P4 is r-tractable but c-tractable.

21



But why do we care about CVIO(H)?

RVIO(H) reduces to CVIO(H).

Fixing vertices using cost.

Input of RVIO(H) is G and f′ : V′ → U.

Input to CVIO(H) is G, c, where c(v′,u) = ∞ if v′ ∈ V′ and
f(v′) ̸= u and 0 everywhere else.

Hope: c-tractable and r-tractable are the same?

Nope: P4 is r-tractable but c-tractable.

21



But why do we care about CVIO(H)?

RVIO(H) reduces to CVIO(H).

Fixing vertices using cost.

Input of RVIO(H) is G and f′ : V′ → U.

Input to CVIO(H) is G, c, where c(v′,u) = ∞ if v′ ∈ V′ and
f(v′) ̸= u and 0 everywhere else.

Hope: c-tractable and r-tractable are the same?

Nope: P4 is r-tractable but c-tractable.

21



But why do we care about CVIO(H)?

RVIO(H) reduces to CVIO(H).

Fixing vertices using cost.

Input of RVIO(H) is G and f′ : V′ → U.

Input to CVIO(H) is G, c, where c(v′,u) = ∞ if v′ ∈ V′ and
f(v′) ̸= u and 0 everywhere else.

Hope: c-tractable and r-tractable are the same?

Nope: P4 is r-tractable but c-tractable.

21



But why do we care about CVIO(H)?

RVIO(H) reduces to CVIO(H).

Fixing vertices using cost.

Input of RVIO(H) is G and f′ : V′ → U.

Input to CVIO(H) is G, c, where c(v′,u) = ∞ if v′ ∈ V′ and
f(v′) ̸= u and 0 everywhere else.

Hope: c-tractable and r-tractable are the same?

Nope: P4 is r-tractable but c-tractable.

21



An observation: moving up

N(u) ✓ N(v)N(u) ✓ N(v)

f(x) = uf(x) = u

uu

vv

HH

22



An observation: moving up

uu

vv

HH

N(u) ✓ N(v)N(u) ✓ N(v)

f(x) = uf(x) = u

f 0(y) =

(
f(y) if y 6= x

v otherwise
f 0(y) =

(
f(y) if y 6= x

v otherwise

Violation of f′ is at most violation of f. 23



Superseded vertices

Assume there is a total order ≺ of the vertices in H. u is
superseded by v, if

• N(u) ⊊ N(v), or
• N(u) = N(v) and u ≺ v.

24



Apex

A vertex is an apex if no vertex supersedes it.

The apex subgraph of H is H[A], where A is the set of apex
vertices.

There exists an optimal solution where the non-fixed vertices
are mapped to apex vertices.

25



Apex

A vertex is an apex if no vertex supersedes it.

The apex subgraph of H is H[A], where A is the set of apex
vertices.

There exists an optimal solution where the non-fixed vertices
are mapped to apex vertices.

25



A graph with a single vertex apex subgraph is r-tractable.

26



A graph with a single vertex apex subgraph is r-tractable.

26



r-tractability and c-tractability

Theorem ([Elem, Hassin & Monnot 13])
H is r-tractable if the apex subgraph of H is a complete graph.

Complete graphs are c-tractable.

27



r-tractability and c-tractability

Theorem ([Elem, Hassin & Monnot 13])
H is r-tractable if the apex subgraph of H is a complete graph.

Complete graphs are c-tractable.

27



r-tractability and c-tractability

Theorem ([Kawarabayashi & X 20])
H is r-tractable if the apex subgraph of H is c-tractable.

HHGG

f 0f 0

G[V \ V 0]G[V \ V 0] H[A]H[A]

f 0 : V 0 ! Uf 0 : V 0 ! U

G = (V,E)G = (V,E) G[V \ V 0]G[V \ V 0]

c(v, u) =

������

8
<

:vv0
����

v0 2 V 0

vv0 2 E
uf 0(v0) 62 F

9
=

;

������
c(v, u) =

������

8
<

:vv0
����

v0 2 V 0

vv0 2 E
uf 0(v0) 62 F

9
=

;

������

f 0f 0

<latexit sha1_base64="wacx3HbDkZIGPe4dWnHPX6c+YBg=">AAAB+3icbVBNT8JAEN3iF+JXxaOXjWCCF9JyUI8kXjiikY8EGrJdtrBhu212pwbS8Fe8eNAYr/4Rb/4bF+hBwZdM8vLeTGbm+bHgGhzn28ptbe/s7uX3CweHR8cn9mmxraNEUdaikYhU1yeaCS5ZCzgI1o0VI6EvWMef3C38zhNTmkfyEWYx80IykjzglICRBnaxD2wKfpA+tHk0r5Qb5auBXXKqzhJ4k7gZKaEMzYH91R9GNAmZBCqI1j3XicFLiQJOBZsX+olmMaETMmI9QyUJmfbS5e1zfGmUIQ4iZUoCXqq/J1ISaj0LfdMZEhjrdW8h/uf1EghuvZTLOAEm6WpRkAgMEV4EgYdcMQpiZgihiptbMR0TRSiYuAomBHf95U3SrlXd66p7XyvVnSyOPDpHF6iCXHSD6qiBmqiFKJqiZ/SK3qy59WK9Wx+r1pyVzZyhP7A+fwDSCJOT</latexit>

RVio(H)
<latexit sha1_base64="wacx3HbDkZIGPe4dWnHPX6c+YBg=">AAAB+3icbVBNT8JAEN3iF+JXxaOXjWCCF9JyUI8kXjiikY8EGrJdtrBhu212pwbS8Fe8eNAYr/4Rb/4bF+hBwZdM8vLeTGbm+bHgGhzn28ptbe/s7uX3CweHR8cn9mmxraNEUdaikYhU1yeaCS5ZCzgI1o0VI6EvWMef3C38zhNTmkfyEWYx80IykjzglICRBnaxD2wKfpA+tHk0r5Qb5auBXXKqzhJ4k7gZKaEMzYH91R9GNAmZBCqI1j3XicFLiQJOBZsX+olmMaETMmI9QyUJmfbS5e1zfGmUIQ4iZUoCXqq/J1ISaj0LfdMZEhjrdW8h/uf1EghuvZTLOAEm6WpRkAgMEV4EgYdcMQpiZgihiptbMR0TRSiYuAomBHf95U3SrlXd66p7XyvVnSyOPDpHF6iCXHSD6qiBmqiFKJqiZ/SK3qy59WK9Wx+r1pyVzZyhP7A+fwDSCJOT</latexit>

RVio(H)
<latexit sha1_base64="vI8SouLOwpfhSXNbTaeSnY6rLo4=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJD+qx0kuPFewHtKFstpt26WYTdidiCQX/ihcPinj1d3jz37htc9DWBwOP92aYmefHgmtwnG9rbX1jc2s7t5Pf3ds/OLSPjls6ShRlTRqJSHV8opngkjWBg2CdWDES+oK1/XFt5rcfmNI8kvcwiZkXkqHkAacEjNS3T3vAHsEP0lqLR9NSsd699YqXfbvglJ058CpxM1JAGRp9+6s3iGgSMglUEK27rhODlxIFnAo2zfcSzWJCx2TIuoZKEjLtpfPzp/jCKAMcRMqUBDxXf0+kJNR6EvqmMyQw0sveTPzP6yYQ3Hgpl3ECTNLFoiARGCI8ywIPuGIUxMQQQhU3t2I6IopQMInlTQju8surpFUpu1dl965SqDpZHDl0hs5RCbnoGlVRHTVQE1GUomf0it6sJ+vFerc+Fq1rVjZzgv7A+vwBuFeUmw==</latexit>

CVio(H[A])
<latexit sha1_base64="vI8SouLOwpfhSXNbTaeSnY6rLo4=">AAAB/nicbVBNS8NAEN34WetXVDx5WWyFeilJD+qx0kuPFewHtKFstpt26WYTdidiCQX/ihcPinj1d3jz37htc9DWBwOP92aYmefHgmtwnG9rbX1jc2s7t5Pf3ds/OLSPjls6ShRlTRqJSHV8opngkjWBg2CdWDES+oK1/XFt5rcfmNI8kvcwiZkXkqHkAacEjNS3T3vAHsEP0lqLR9NSsd699YqXfbvglJ058CpxM1JAGRp9+6s3iGgSMglUEK27rhODlxIFnAo2zfcSzWJCx2TIuoZKEjLtpfPzp/jCKAMcRMqUBDxXf0+kJNR6EvqmMyQw0sveTPzP6yYQ3Hgpl3ECTNLFoiARGCI8ywIPuGIUxMQQQhU3t2I6IopQMInlTQju8surpFUpu1dl965SqDpZHDl0hs5RCbnoGlVRHTVQE1GUomf0it6sJ+vFerc+Fq1rVjZzgv7A+vwBuFeUmw==</latexit>

CVio(H[A])

28



Classification of RVIO

The harder direction requires knowledge from CSP theory.

Theorem ([Kawarabayashi & X 20])
H is r-tractable if and only if the apex subgraph of H is
c-tractable.

The theorem holds for directed graphs for an appropriate
definition of apex.

29



Classification of RVIO

The harder direction requires knowledge from CSP theory.

Theorem ([Kawarabayashi & X 20])
H is r-tractable if and only if the apex subgraph of H is
c-tractable.

The theorem holds for directed graphs for an appropriate
definition of apex.

29



Consequence

A strange problem
Input: Graph G and vertices x, y, z.

Output: A minimum cardinality set of edges F such that

• dG−F(x, y),dG−F(y, z) ≥ 3,
• dG−F(x, z) ≥ 4.

Reduces to RVIO(H), where H is:

• (3, 3)-way-cut is NP-hard.
• (4, 2)-way-cut is NP-hard.

30



Consequence

A strange problem
Input: Graph G and vertices x, y, z.

Output: A minimum cardinality set of edges F such that

• dG−F(x, y),dG−F(y, z) ≥ 3,
• dG−F(x, z) ≥ 4.

Reduces to RVIO(H), where H is:

• (3, 3)-way-cut is NP-hard.
• (4, 2)-way-cut is NP-hard.

30



Consequence

A strange problem
Input: Graph G and vertices x, y, z.

Output: A minimum cardinality set of edges F such that

• dG−F(x, y),dG−F(y, z) ≥ 3,
• dG−F(x, z) ≥ 4.

Reduces to RVIO(H), where H is:

• (3, 3)-way-cut is NP-hard.
• (4, 2)-way-cut is NP-hard.

30



s-tractable graphs



Previously known

SHom(H)
Input: Graph G.

Output: Decide if there is a surjective homomorphism from G
to H.

A graph H is s0-tractable if SHom(H) is tractable.

• H is r-tractable then it is s-tractable.
• H is not s0-tractable then it is not s-tractable.

[Elem, Hassin & Monnot 13]

31



Tractability from components

Theorem
A reflexive graph H is s-tractable if and only if each of its
component is s-tractable.

We will prove the case when H has two components.

H is composed of components H1 and H2.

H1 is not s-tractable. We reduce SVIO(H1) to SVIO(H).

32



Tractability from components

Theorem
A reflexive graph H is s-tractable if and only if each of its
component is s-tractable.

We will prove the case when H has two components.

H is composed of components H1 and H2.

H1 is not s-tractable. We reduce SVIO(H1) to SVIO(H).

32



Hardness

H1H1

H2H2

X

UU

HH

33



Hardness

H1H1

H2H2

G1G1

VV

X

UU

HH

34



Hardness

H1H1

H2H2

G1G1

G2 = H2G2 = H2

VV

X X

UU

HHGG

35



Hardness

H1H1

H2H2

G1G1

G2 = H2G2 = H2

VV

X X

UU

HHGG

36



Hardness

Proof idea: For a minimum surjective map f from G to H, we
can find a surjective map f′ such that

• violation of f′ is no larger than violation of f,
• f′(X) = X,
• f′(V) = U.

f′|V is the desired minimum violation map from G1 to H1.

37



Hardness

H1H1

H2H2

G1G1

G2 = H2G2 = H2

VV

X X

UU

f�1(U)f�1(U)

f(X)f(X)

uuf�1(X) \Xf�1(X) \X

f(X) ⇢ Xf(X) ⇢ X

38



Hardness

H1H1G1G1

G2 = H2G2 = H2

VV

X X

UU

f�1(U)f�1(U)

f 0(X)f 0(X)

uuf�1(X) \Xf�1(X) \X

H2H2

f 0(v) =

8
><

>:

v if v 2 X

u if v 2 f�1(X) \X
f(v) otherwise

f 0(v) =

8
><

>:

v if v 2 X

u if v 2 f�1(X) \X
f(v) otherwise

f(X) ⇢ Xf(X) ⇢ X

Reflexivity is crucial.

39



Hardness

H1H1G1G1

G2 = H2G2 = H2

VV

X X

UU

f�1(U)f�1(U)

f 0(X)f 0(X)

uuf�1(X) \Xf�1(X) \X

H2H2

f 0(v) =

8
><

>:

v if v 2 X

u if v 2 f�1(X) \X
f(v) otherwise

f 0(v) =

8
><

>:

v if v 2 X

u if v 2 f�1(X) \X
f(v) otherwise

f(X) ⇢ Xf(X) ⇢ X

Reflexivity is crucial.

39



Hardness

H1H1G1G1

G2 = H2G2 = H2

VV

X X

UU

f�1(U)f�1(U)

f(X)f(X)

f�1(X)f�1(X)

f(X) ⇢ Uf(X) ⇢ U

H2H2

40



Hardness

H1H1G1G1

VV UU

f�1(U)f�1(U)

f(X)f(X)

f�1(X)f�1(X)

G2 = H2G2 = H2

X Xf 0(X)f 0(X)

f 0(v) =

8
><

>:

v if v 2 X

f(f(v)) if v 2 f�1(X)

f(v) otherwise

f 0(v) =

8
><

>:

v if v 2 X

f(f(v)) if v 2 f�1(X)

f(v) otherwise

f(X) ⇢ Uf(X) ⇢ U

H2H2

41



The other direction: Polynomial time algorithm

Theorem
If the components of a reflexive graph H are s-tractable, then H
is s-tractable.

42



Set up

H is a k vertex graph consist of components U1, . . . ,Uℓ.

H[Ui] is s-tractable for all i.

f is the optimal solution of SVIO(H) with input graph G.

Vi = f−1(Ui).

43



HHGG

U3U3

U1U1

U2U2

44



V3V3

V2V2

V1V1

45



V3V3

V2V2

V1V1

46



The set of edges crossing the ℓ-cut (V1, . . . , Vℓ) has value at
most the value of the min-k-cut of G.

min-k-cut value ≥ min violation ≥ ℓ-cut value.

47



Enumerating ℓ-cuts with small value

Theorem
There exists an algorithm that takes nO(k) time and produce all
ℓ-cuts with value at most the value of a min-k-cut.

Through spanning tree packing [Thorup 08; Chekuri, Quanrud, X
20].

48



Enumerating ℓ-cuts with small value

Theorem
There exists an algorithm that takes nO(k) time and produce all
ℓ-cuts with value at most the value of a min-k-cut.

Through spanning tree packing [Thorup 08; Chekuri, Quanrud, X
20].

48



Algorithm

Input graph G.

1. For each ℓ-partition (V1, . . . , Vℓ) of value at most min-k-cut
1.1 Solve SVIO(H[Ui]) with input G[Vi].
1.2 Combine the solutions into a candidate solution.

2. Output the minimum candidate solution.

49



Main Theorem

Theorem
A reflexive graph H is s-tractable if and only if each of its
component is s-tractable.

50



Trees

Theorem
A reflexive tree T is s-tractable if and only if diam(T) ≤ 4 and for
every 3 distinct vertices at least 2 has distance at most 3.

Proof idea: Hardess

• For trees the distance relations completely determines the
existance of homomorphism.

• We design gadgets to force distance relations of fixed
vertices.

• Conclude hardness from (3, 3)-way-cut and (4, 2)-way-cut.

For the trees not covered by hardness, we see that T is
r-tractable, therefore T is s-tractable.

51



Trees

Theorem
A reflexive tree T is s-tractable if and only if diam(T) ≤ 4 and for
every 3 distinct vertices at least 2 has distance at most 3.

Proof idea: Hardess

• For trees the distance relations completely determines the
existance of homomorphism.

• We design gadgets to force distance relations of fixed
vertices.

• Conclude hardness from (3, 3)-way-cut and (4, 2)-way-cut.

For the trees not covered by hardness, we see that T is
r-tractable, therefore T is s-tractable.

51



Open Problems



Classify the s-tractable graphs

All 4 vertex reflexive graphs and 2 vertex digraphs have been
characterized.

• Conjectures
• H has a surjective homomorphism to H′, and H′ is not
s-tractable, then H is not s-tractable.

• 5 vertex graphs?

• 3 vertex digraphs?

52



Thank you

52


	Classification of r-tractable graphs
	s-tractable graphs
	Open Problems

