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Map that preserve graph structure

A map from G = (V,E) to H= (U, F) is a functionf: V— U. His
the pattern graph.

A map is a (graph) homomorphism, if uv € E then f(u)f(v) € F.
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Graph homomorphism model other problems

Fix a pattern graph, is the graph homomorphism problem hard?

Is the graph 3-colorable?

Graph homomorphism is NP-hard.



Graph homomorphism can be easy (even with constratints)

The graph homomorphism problem for any graph with a
self-loop is trivial: map all vertices to a vertex with self loop.



Graph homomorphism can be easy (even with constratints)

The graph homomorphism problem for any graph with a
self-loop is trivial: map all vertices to a vertex with self loop.

Does the graph have 3 components?

I\o& d

* additional surjectivity is required.



Measure how far away from homomorphism

The edge not mapped to an edge is a violating edge.

The violation of a map is the number of violating edges.



Surjective Minimum Violation. SVIO(H)
Input: G = (V,E).

Output: A surjective map from G to H with minimum violation.
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Goal: classify the s-tractable and r-tractable
graphs.



For a cut problem, there is usually a pattern graph H, such that

Fixed-Terminal Min Cute P & H is r-tractable
Global Min Cut € P & H is s-tractable

Consequence: A unified tool to quickly decide if a cut problem
is easy or hard by looking at the pattern graph H.



Out Results

- Relating r-tractability and s-tractability with various cut
problems.

- A complete classification of r-tractable graphs.

- disconnected reflexive s-tractable graphs are defined by
the s-tractability of its components.

- A complete classification of s-tractability of trees.



Out Results

- Relating r-tractability and s-tractability with various cut
problems.

- A complete classification of r-tractable graphs.

- disconnected reflexive s-tractable graphs are defined by
the s-tractability of its components.

- A complete classification of s-tractability of trees.

Remarks:

- All graphs after this point are reflexive. For simplicity, we
do not draw the self-loops.

- We state theorems for graphs, but there are directed graph
counterparts.

- Our results hold for weighted graphs too. The violation is
the sum of the weights of the violating edges.



- Classification of s-tractable graphs and r-tractable graphs
was studied under the name “G.-cut”. [Elem, Hassin &
Monnot 13]

- A more general problem called 0-extension problem was
studied, but only approximation was considered [Calinescu
et. al. 01]



Modeling cut problems



Input: G and the terminals v4,..., v € V(G)
Output: Find a minimum set of edges F, such that such in
G — F, each pair of terminals cannot reach each other.
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Problem: min k-cut
Input: G = (V,E)
Output: A minimum set of edges F, such that G — F has at least

k components.
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kR-way cut and k-cut

I, is the reflexive graph of k isolated vertices.
k-way cut is equivalent to RVIO().

kR-way cut is NP-hard for k > 3. [Dahlhaus et. al. 94]
k-cut is equivalent to SVio(/).

Solvable in polynomial time for every fixed k [Goldschmidt &
Hochbaum 94, Karger & Stein 96].

Theorem
I, is r-tractable if and only if R < 2. I, is s-tractable for all k.

14



(¢, R)-way-cut

A set of edges F is a (¢, R)-way-cut for a set of terminals
V1,..., Vg, if In G — F, the pairwise distance of the terminals is at
least £ + 1.
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(¢, R)-way-cut

A set of edges F is a (¢, R)-way-cut for a set of terminals

V1,..., Vg, if In G — F, the pairwise distance of the terminals is at
least £ + 1.

(o0, R)-way-cut is the standard k-way-cut.

Problem: (¢, R)-way-cut
Input: G, terminals vq, ..., Vg

Output: A minimum cardinality (¢, R)-way-cut.
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(¢, R)-way-cut

Theorem ([Mahjoub & McCormick 00])
(¢,2)-way-cut is tractable if and only if £ < 3.

Theorem _ .
(¢, R)-way-cut is equivalent to RVIO(By ).

Bis Bs3



Cut problem in directed graphs

Fis a set of edges. Fis a

- kR-reach-cut, if in G — F, there exists a set of k terminals,
such that every vertex can reach at most one of the
terminals.
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Cut problem in directed graphs

ern NS

(a) T3, lineat-3-cut
(b) S, k = 3, 3-reach-cut

/-

(C) Hbicuty bicut

Previous cut problem is equivalent to SVIo(H) for some
directed graph H.



Classification of r-tractable graphs




Start with a harder problem.



Let G = (V,E), H=(U,F). A cost function ¢ : V x U — N assigns
cost ¢(v,u) to mapping v to u.

The cost of a map ffrom Gto H is

> cv.f(v)

veV
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Minimum cost and violation

Problem: CVio(H)
Input: Graph G and a cost function c.

Output: A map ffrom G to H that minimizes the sum of
violation and cost.
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Minimum cost and violation

Problem: CVio(H)
Input: Graph G and a cost function c.

Output: A map ffrom G to H that minimizes the sum of
violation and cost.

H is c-tractable if CVIO(H) is tractable.

Theorem ([Deineko et.al. 08])
H is c-tractable if and only if there are two sets A and B such

that AU B =V, and H[A] and H|[B] are cliques.
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But why do we care about CVio(H)?

RVIo(H) reduces to CVIO(H).
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But why do we care about CVio(H)?

RVIo(H) reduces to CVIO(H).
Fixing vertices using cost.
Input of RVIO(H) isGand f : V' — U.

Input to CVIO(H) is G, ¢, where ¢(V/,u) = oo if V € V' and
f(V') # u and 0 everywhere else.

Hope: c-tractable and r-tractable are the same?

Nope: P, is r-tractable but c-tractable.
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An observation: moving up

22



An observation: moving up

oy Jfly) fy#a
H 9 fly) = {v otherwise

Violation of f is at most violation of f. Z



Superseded vertices

Assume there is a total order < of the vertices in H. u is
superseded by v, if

- N(u) € N(v), or
- N(u) =N(v) and u < v.

24



A vertex is an apex if no vertex supersedes it.
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A vertex is an apex if no vertex supersedes it.

The apex subgraph of H is H[A], where A is the set of apex
vertices.

There exists an optimal solution where the non-fixed vertices
are mapped to apex vertices.

25






A graph with a single vertex apex subgraph is r-tractable.

26



r-tractability and c-tractability

Theorem ([Elem, Hassin & Monnot 13])
H is r-tractable if the apex subgraph of H is a complete graph.

27



r-tractability and c-tractability

Theorem ([Elem, Hassin & Monnot 13])
H is r-tractable if the apex subgraph of H is a complete graph.

Complete graphs are c-tractable.
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r-tractability and c-tractability

Theorem ([Kawarabayashi & X 20])

H is r-tractable if the apex subgraph of H is c-tractable.

RVio(H) CVio(H[A])
G=(V,E) GV \V']
v eV’
v =U c(v,u) = {vv’ w' € E H
uf'(v') ¢ F
@ ~f\a g )
T GIV\ V'] H(4]
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Classification of RVIO

The harder direction requires knowledge from CSP theory.

Theorem ([Kawarabayashi & X 20]) .
H is r-tractable if and only if the apex subgraph of H is

c-tractable.
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Classification of RVIO

The harder direction requires knowledge from CSP theory.

Theorem ([Kawarabayashi & X 20]) .
H is r-tractable if and only if the apex subgraph of H is

c-tractable.

The theorem holds for directed graphs for an appropriate
definition of apex.
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Consequence

Input: Graph G and vertices x, y, z.

Output: A minimum cardinality set of edges F such that

de—r(X,y),de—r(y,2) > 3,
do_r(x,7) > 4

30



Consequence

Input: Graph G and vertices x, y, z.

Output: A minimum cardinality set of edges F such that

de—r(X,y),de—r(y,2) > 3,
de—r(x,2) > 4.

Reduces to RVIO(H), where H is:

O—@ —O

30



Consequence

Input: Graph G and vertices x, y, z.

Output: A minimum cardinality set of edges F such that

de—r(X,y),de—r(y,2) > 3,
de—r(x,2) > 4.

Reduces to RVIO(H), where H is:

O—@ —O

- (3,3)-way-cut is NP-hard.
- (4,2)-way-cut is NP-hard.
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s-tractable graphs




Previously known

SHom(H)
Input: Graph G.

Output: Decide if there is a surjective homomorphism from G
to H.

A graph H is sp-tractable if SHom(H) is tractable.

- His r-tractable then it is s-tractable.

- His not sp-tractable then it is not s-tractable.

[Elem, Hassin & Monnot 13]
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Tractability from components

Theorem 4 ‘ . .
A reflexive graph H is s-tractable if and only if each of its

component is s-tractable.
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Tractability from components

Theorem 4 ‘ . .
A reflexive graph H is s-tractable if and only if each of its

component is s-tractable.

We will prove the case when H has two components.
H is composed of components H; and H,.

H; is not s-tractable. We reduce SVIO(H;) to SVIO(H).
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Hardness

H
H,

H,
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Hardness

H
G H,

Hy

34



Hardness
G H
V @ Q U
G H
X % % X
H,

Gy = Hj
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Hardness
G H
V @ Q U
G H
X % % X
H,

Gy = Hj
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Hardness

Proof idea: For a minimum surjective map f from G to H, we
can find a surjective map f such that

- violation of f is no larger than violation of f,
- ]q(X) - X1
f(v)=U.

f'lv is the desired minimum violation map from G, to H,.

37



Hardness

F2HU) f(X) c X
\%4
FAEINX
\61\\\
X
Gy = H, H,
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Hardness

1) f(X)cX
V P I o~c----
HENX e
v ifveX
Gy =qu ifve fFAX)\X
f(v) otherwise
X X
Gy = H, H,
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Hardness

1) f(X)cX
V P I o~c----
FHXNX ~
v ifreX
G u ifve fFAX)\X
f(v)  otherwise
X X
Gy = H, H,

Reflexivity is crucial.
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Hardness

) f(X)cU
v U
)
X X
Gy = H, H,
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Hardness

1) f(X)cU
\4 U
74X
v ifveX
G flo)=4f(f) ifvef(X)
fv) otherwise
X X
Gy = H, H,
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The other direction: Polynomial time algorithm

Theorem ‘
If the components of a reflexive graph H are s-tractable, then H

is s-tractable.
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H is a k vertex graph consist of components Uy, ..., U,.
H[U;] is s-tractable for all i.
fis the optimal solution of SVio(H) with input graph G.

Vi = f(U)).
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Uy

Us
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Vi

Va

Vs
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Vi

Va

Vs
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The set of edges crossing the ¢-cut (Va,...,V,) has value at
most the value of the min-k-cut of G.

min-k-cut value > min violation > ¢-cut value.
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Enumerating /-cuts with small value

Theorem
There exists an algorithm that takes n°®) time and produce all

¢-cuts with value at most the value of a min-k-cut.
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Enumerating /-cuts with small value

Theorem
There exists an algorithm that takes n°®) time and produce all

¢-cuts with value at most the value of a min-k-cut.

Through spanning tree packing [Thorup 08; Chekuri, Quanrud, X
20].
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Input graph G.

1. For each ¢-partition (V4,..., V) of value at most min-k-cut
11 Solve SVIo(H[U;]) with input G[Vj].
1.2 Combine the solutions into a candidate solution.

2. Output the minimum candidate solution.
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Theorem , , ' '
A reflexive graph H is s-tractable if and only if each of its

component is s-tractable.
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Trees

Theorem ] )
A reflexive tree T is s-tractable if and only if diam(T) < 4 and for

every 3 distinct vertices at least 2 has distance at most 3.
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Trees

Theorem ] )
A reflexive tree T is s-tractable if and only if diam(T) < 4 and for

every 3 distinct vertices at least 2 has distance at most 3.
Proof idea: Hardess

- For trees the distance relations completely determines the
existance of homomorphism.

- We design gadgets to force distance relations of fixed
vertices.

- Conclude hardness from (3, 3)-way-cut and (4, 2)-way-cut.

For the trees not covered by hardness, we see that T is
r-tractable, therefore T is s-tractable.
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Open Problems




Classify the s-tractable graphs

All 4 vertex reflexive graphs and 2 vertex digraphs have been
characterized.

- Conjectures
- H has a surjective homomorphism to H’, and H’ is not
s-tractable, then H is not s-tractable.

- 5vertex graphs?

/9 A9 AR

-+ 3 vertex digraphs?

O—O0—O

o 20
& oo .



Thank you
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