Detecting Weakly Simply Polygon

Hsien-Chih Chang, Jeff Erickson, Chao Xu

University of Illinois Urbana-Champaign Department of Computer Science

Motivation

- Many algorithms that works for simple polygons could work for degenerate cases.
- We define weakly simple polygon, which intuitively means the polygon overlaps but doesn't cross itself.
- Moreover, we provide an efficient algorithm to decide if a polygon is weakly simple.

Definition

• A closed curve P on the plane is weakly simple if for any $\varepsilon > 0$, there is a simple closed curve P' whose Fréchet distance from P is at most

ε.

A useful Characterization

Ribó Mor's recent result implies a polygon is weakly simple iff for every $\varepsilon > 0$ we can obtain a simple polygon by perturbing each vertex within a ball of radius ε . [Ribó Mor 2006]

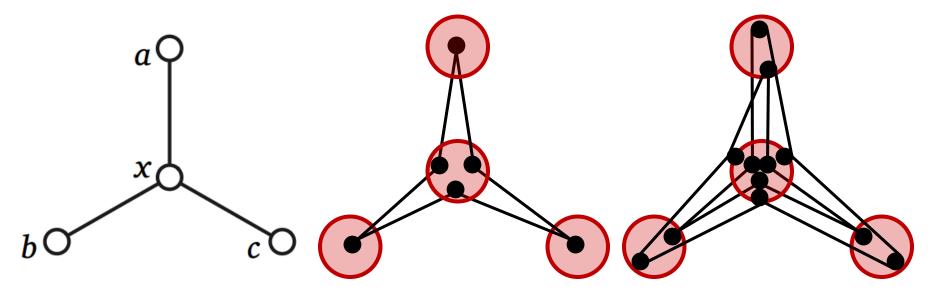
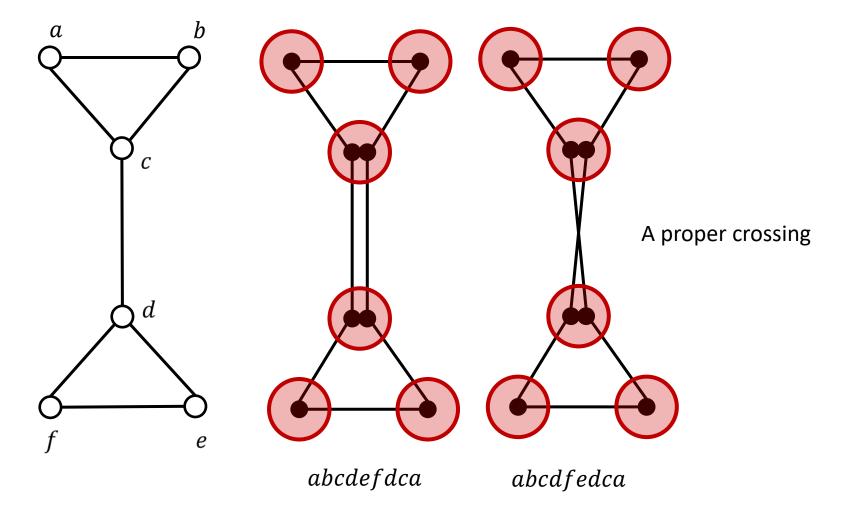


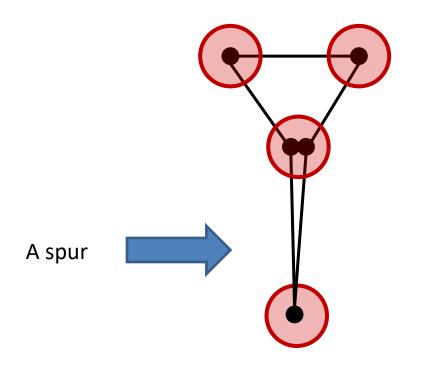
Figure 1. *axbxcxa* is weakly simple; *axbxcxaxbxcxa* is not.

There are alternative definitions which fails to capture the weakly simple property for various reasons. For example, Toussaint defined weakly simple as polygons with turning number ± 1 and no subpath have a "proper crossing". [Toussaint 1989]



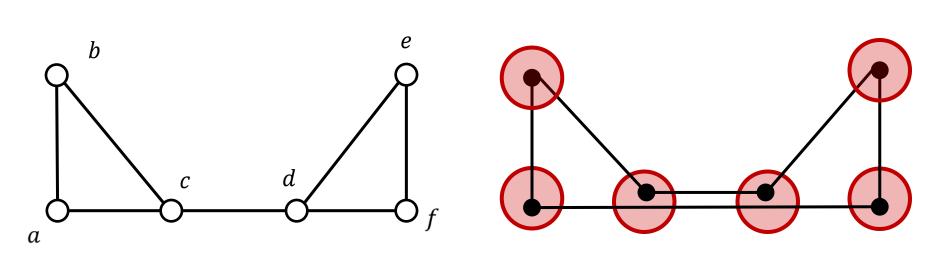
The right side is a "zoomed in view". Each large disk is one node, and the line segments between the same large disks overlaps.

Spurs: vertices whose two incident edges overlap.



Toussaint's definition fails because turning numbers are not well defined.

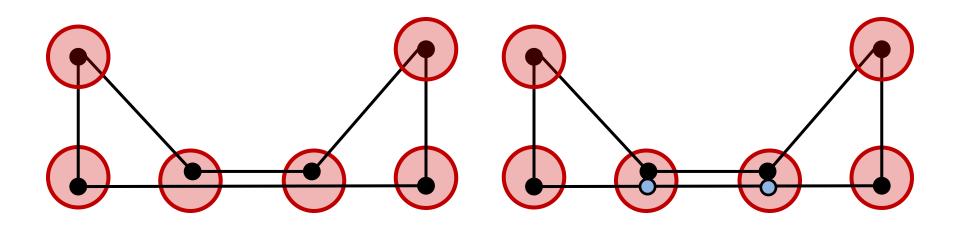
Forks: A vertex is a fork if it is contained in the interior of some edges.



abcdefa

Forks: c and d are contained inside the edge af.

Polygon with forks can be converted to equivalent polygon without forks with $O(n^2)$ blow up.



O(f(n)) algorithm (without forks) $\Rightarrow O(f(n^2))$ algorithm (with forks)

Detecting weakly simple polygon without forks

With spurs?	Time (n = number of vertices)	Reference
No Spurs	O(n)	Folklore
With spurs	$O(n^{3})$	[Cortese et al. 2009]
With spurs	$O(n\log n)$	This paper

Instead of a polygon without forks, we can consider the polygon to be a walk on a plane graph. Similarly we can define a weakly simple walk of a plane graph.

We want to decide if a walk W on the plane graph G is weakly simple.

An edge uv is a base for v if each occurrence of v in the walk W is immediately preceded or followed by the other endpoint u.

An edge uv is expandable if

- 1. uv is a base for both u and v.
- 2. *uv* is the unique base either *u* or *v*.

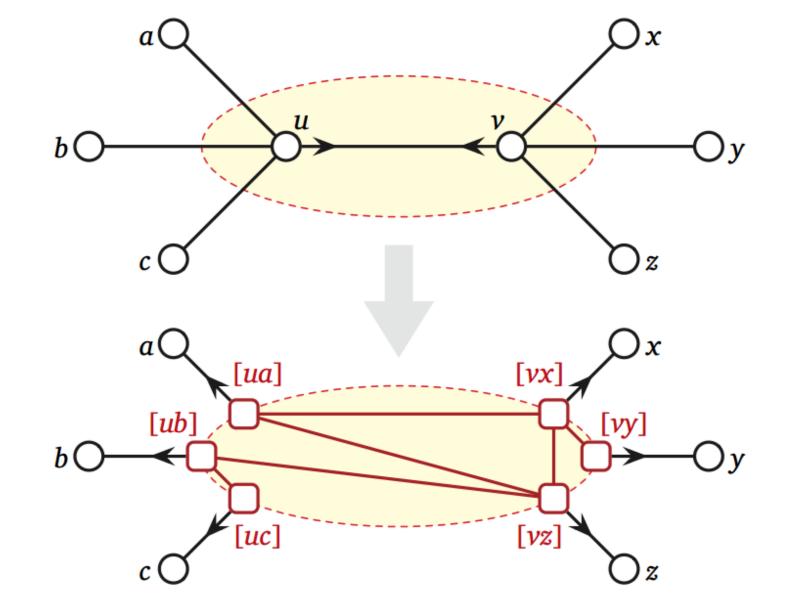
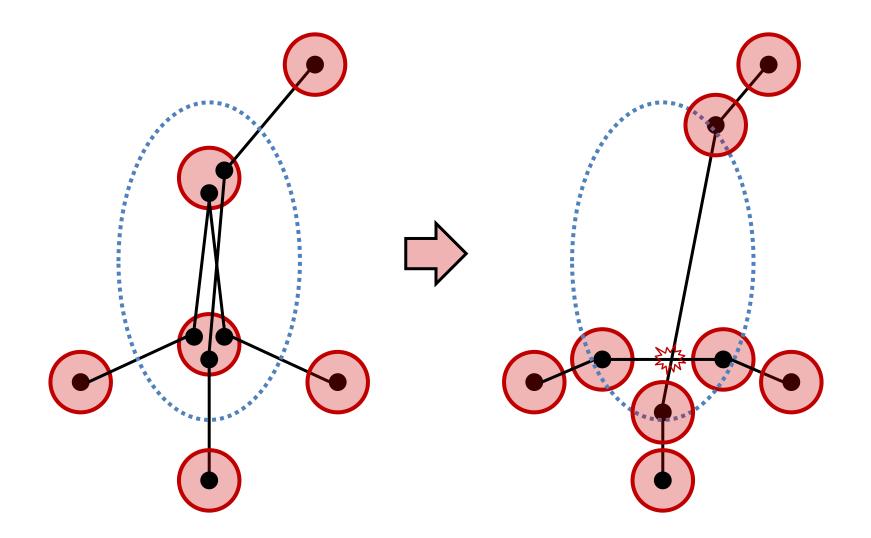


Figure 2. An example of edge expansion. An arrow leaving a node indicates the base of that node.

The walk is weakly simple iff the walk after the expansion is weakly simple. The expansion might introduces local non-planarity.



The algorithm:

- 1. A linear time preprocessing stage, after preprocessing every vertex has an base.
- 2. Pick an expandable edge, expand it. Repeat this step until there is no more expandable edge. Reject if any expansion introduce local non-planarity.
- 3. The graph is either a cycle or a empty graph, and it's easy to check if it's weakly simple.

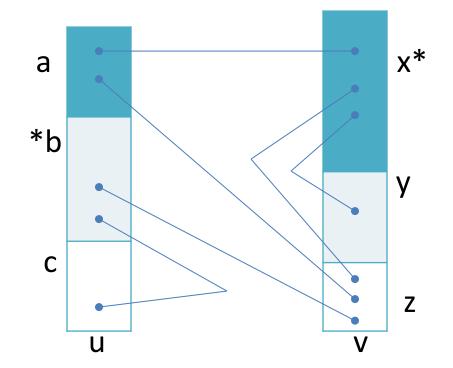
Analysis

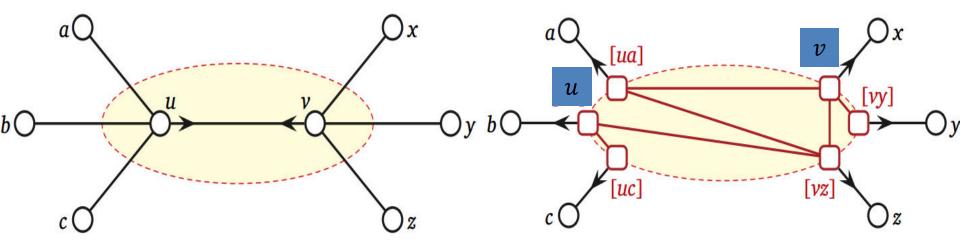
Define a potential function $\Phi(W, G) = |W| - |G|$. Notice $0 \le \Phi(W, G) \le n$, and every expansion decrease $\Phi(W, G)$ by at least 1. There are at most n expansions.

The naïve implementation represent the walk by a circular string. The the expansion modify the walk locally by replacing strings of the form $a(uv)^k x$ to a[ua][vx]x.

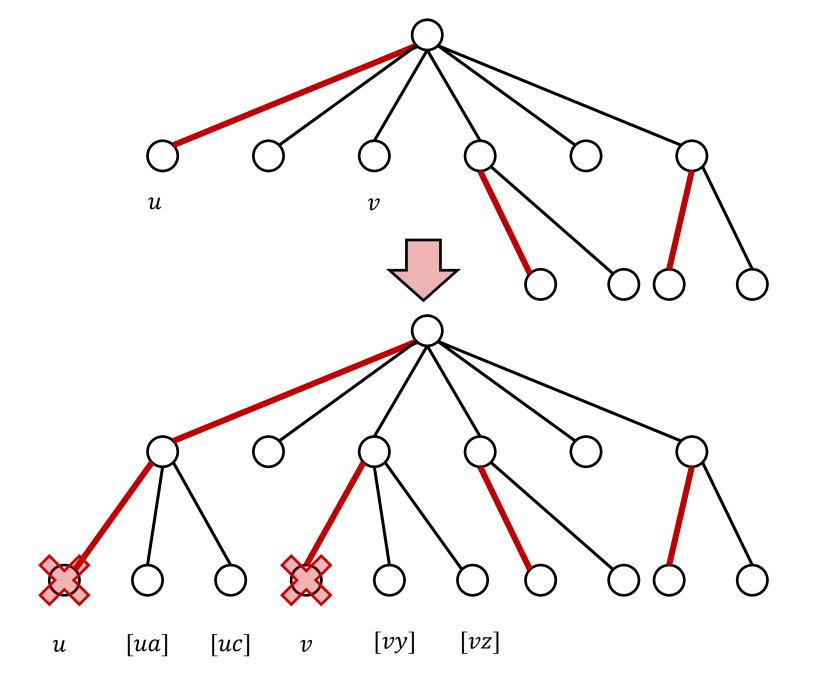
Each expansion can take O(n) time, thus the algorithm takes $O(n^2)$ time.

We can reuse the nodes instead of delete them. Namely we let [ua] = u and [vx] = v for some a and x.





- w(u) and w'(u) measure the number of times the walk crosses the vertex u before and after the expansion.
- The time spent on expanding an edge uvequals O(w(u) + w(v)) if we do not reuse the vertices.
- It will run in
 O((w(u) w'(u)) + (w(v) w'(v))) time
 if we reuse the vertices.
- Heavy-light decomposition implies the running time to be O(n log n).



References

- Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani, and Maurizio Pizzonia. On embedding a cycle in a plane graph. Discrete Mathematics 309(7):1856–1869, 2009.
- Ares Ribó Mor. Realization and Counting Problems for Planar Structures: Trees and Linkages, Polytopes and Polyominoes. Ph.D. thesis, Freie Universität Berlin, 2006.
- Godfried T. Toussaint. Computing geodesic properties insidea simple polygon. Revue d'Intelligence Artificielle 3(2):9–42, 1989.