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Abstract

In the hypergraph k-cut problem, the input is a hypergraph, and the goal is to find a smallest subset of
hyperedges whose removal ensures that the remaining hypergraph has at least k connected components. This
problem is known to be at least as hard as the densest k-subgraph problem when k is part of the input (Chekuri-Li,
2015). We present a randomized polynomial time algorithm to solve the hypergraph k-cut problem for constant
k. Our algorithm solves the more general hedge k-cut problem when the subgraph induced by every hedge has a
constant number of connected components. In the hedge k-cut problem, the input is a hedgegraph specified by a
vertex set and a disjoint set of hedges, where each hedge is a subset of edges defined over the vertices. The goal
is to find a smallest subset of hedges whose removal ensures that the number of connected components in the
remaining underlying (multi-)graph is at least k. Our algorithm is based on random contractions akin to Karger’s
min cut algorithm. Our main technical contribution is a distribution over the hedges (hyperedges) so that random
contraction of hedges (hyperedges) chosen from the distribution succeeds in returning an optimum solution with
large probability.

1 Introduction
A hypergraph is specified by a vertex set and a collection of hyperedges, where each hyperedge is a nonempty subset
of vertices. The hypergraph k-cut problem is the following (abbreviated HYPERGRAPH-k-CUT): Given a hypergraph,
find a smallest subset of hyperedges whose removal ensures that the number of connected components in the
remaining hypergraph is at least k. Equivalently, the problem asks for a partitioning of the vertex set into k parts
with minimum number of hyperedges crossing the partition (a hyperedge is said to cross a partition if it intersects
at least two parts). This is an extension of the classic hypergraph min cut problem and has several applications
including clustering in VLSI design and network reliability (e.g., see [1,8,16,25,27]).

A special case of HYPERGRAPH-k-CUT in which the input is in fact a graph (i.e., all hyperedges have cardinality
two) is the graph k-cut problem (abbreviated GRAPH-k-CUT). GRAPH-k-CUT has a rich history. When k is part of
the input, Goldschmidt and Hochbaum showed that the problem is NP-hard [8] while Saran and Vazirani designed
a 2-approximation algorithm [22]. When k is a constant, Goldschmidt and Hochbaum gave the first polynomial
time algorithm to solve GRAPH-k-CUT. Their algorithm runs in time nΘ(k

2), where n is the number of vertices in the
input graph [8]. Karger and Stein [13] designed a randomized algorithm that runs in time O(n2(k−1) log3 n) which
is also the current-best run-time among randomized algorithms. The deterministic algorithms have been improved
over a series of works [11,12,24] with the current best run-time being Õ(n2k) due to Thorup [23].

The complexity of HYPERGRAPH-k-CUT has remained an intriguing open problem since the works of Goldschmidt-
Hochbaum and Saran-Vazirani. The case of k = 2, denoted HYPERGRAPH-2-CUT, is well-known to admit deter-
ministic polynomial time algorithms [14,16,17]. When k is part of the input, HYPERGRAPH-k-CUT is NP-hard as
observed from GRAPH-k-CUT. Chekuri and Li [3] recently showed that HYPERGRAPH-k-CUT is at least as hard as the
densest k-subgraph problem from the perspective of approximability. The densest k-subgraph problem is believed
to not admit an efficient constant factor approximation assuming P 6= N P; it is known to not admit an efficient
n1/(log log n)c -approximation for some constant c > 0 assuming the exponential time hypothesis [18]. Chekuri-Li’s
result already illustrates that HYPERGRAPH-k-CUT is significantly harder than GRAPH-k-CUT when k is part of the
input.

When k is a constant, several recent works have aimed at designing polynomial time algorithms but have fallen
short because they are efficient/return an optimal solution only for either restricted families of hypergraphs or for
restricted values of the constant k. We recall these results now. Fukunaga [6] gave a polynomial time algorithm
for HYPERGRAPH-k-CUT in constant rank hypergraphs (the rank of a hypergraph is the cardinality of the largest
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hyperedge). A randomized polynomial time algorithm for HYPERGRAPH-k-CUT in constant rank hypergraphs
for constant k can also be obtained using the uniform random contraction technique of Karger and Stein [13]
as illustrated by Kogan and Krauthgamer [15]. Moving to arbitrary rank hypergraphs, Xiao [25] generalized
the structural results of Goldschmidt-Hochbaum to design a polynomial time algorithm for HYPERGRAPH-3-CUT

based on minimum s− t cut computations in hypergraphs. Okumoto, Fukunaga and Nagamochi [20] reduced
HYPERGRAPH-k-CUT for constant k to the node-weighted k-way cut problem in graphs 1 and thus obtained a
2(1− 1/k)-approximation. They further improved on this approximation factor for k = 4, 5, 6. Thus, it has been
open to determine the complexity of HYPERGRAPH-k-CUT for constant k ≥ 4.

In this work, we present a randomized polynomial time algorithm to solve HYPERGRAPH-k-CUT for constant
k in arbitrary rank hypergraphs. To the best of our knowledge, this is the first polynomial time algorithm for
HYPERGRAPH-k-CUT for constant k.

Our algorithm addresses a more general problem that has garnered much attention recently. We describe
this more general problem now. It is often the case with modern networks that a collection of edges in a graph
are interdependent and consequently could fail together—e.g., interconnected nodes in an optical network that
share/rely on a single resource. Motivated by such scenarios, Ghaffari-Karger-Panigrahi [7] defined the notion of a
hedgegraph. A hedgegraph G = (V, E) is specified by a vertex set V and a set E of disjoint hedges, where each hedge
is a subset of edges over the vertices in V . We will denote the graph underlying a hedgegraph G = (V, E) to be the
multigraph whose vertex set is V and whose edges are the union of the edges in the hedges of G. Essentially, the
graph underlying a hedgegraph is a multigraph whose edges have been partitioned into hedges. In the context of
modern networks, a hedgegraph is a multigraph where each hedge corresponds to a resource and a link between
two nodes fails if all hedges containing an edge between the two nodes fail, i.e., all resources that the link relies
upon become unavailable.

In the s− t hedge cut problem (abbreviated {s, t}-HEDGE-CUT), the input is a hedgegraph and the goal is to
find a smallest subset of hedges whose removal disconnects s and t in the underlying graph. In the global variant
of {s, t}-HEDGE-CUT (abbreviated HEDGE-2-CUT), the input is a hedgegraph and the goal is to find a smallest
subset of hedges whose removal leads to at least two connected components in the underlying graph. It is known
that {s, t}-HEDGE-CUT is NP-hard [26] while Ghaffari et al. showed that HEDGE-2-CUT admits a randomized
polynomial time approximation scheme [7]. Ghaffari et al. [7] also gave a quasi-polynomial time algorithm to
solve HEDGE-2-CUT. It remains open to design a polynomial time algorithm for HEDGE-2-CUT. We make progress
towards this question by addressing an interesting and non-trivial family of instances that we describe next. We
will later show that this family already encompasses hypergraphs.

The span of a hedge is the number of connected components in the subgraph induced by the edges in the hedge.
The span of a hedgegraph is the largest span among its hedges. HEDGE-2-CUT in hedgegraphs with span one reduces
to HYPERGRAPH-2-CUT (by replacing each hedge by a hyperedge over the set of vertices incident to the edges in
the hedge) and is hence solvable efficiently. The complexity of HEDGE-2-CUT for constant span hedgegraphs was
raised as an open problem by Coudert et al. [5]. We generalize our techniques for HYPERGRAPH-k-CUT to design
a polynomial-time algorithm for HEDGE-2-CUT in constant span hedgegraphs. More generally, we consider the
hedge k-cut problem (abbreviated HEDGE-k-CUT): The input is a hedgegraph and the goal is to find a smallest
subset of hedges whose removal leads to at least k connected components in the underlying graph. Equivalently,
the problem asks for a partitioning of the vertex set into k parts with minimum number of hedges crossing the
partition (a hedge is said to cross a partition if it has an edge whose two end-vertices are in different parts). We
show that HEDGE-k-CUT for hedgegraphs with constant span is tractable for constant k.

As an additional result, we illustrate that the ideas behind the polynomial time approximation scheme for
HEDGE-2-CUT by Ghaffari et al. [7] can be generalized to obtain a polynomial time approximation scheme for
HEDGE-k-CUT for constant k (for all input hedgegraphs irrespective of their spans).

1.1 Results.
In the rest of the paper, we will assume that k ≥ 2 is a constant and avoid stating this explicitly. Our main result
is that HEDGE-k-CUT in constant span hedgegraphs admits an efficient algorithm. For a hedge e, we use r(e) to
denote the number of vertices incident to the edges in e. Throughout, n will denote the number of vertices in the
input hedgegraph G = (V, E), m := |E| is the number of hedges and M :=

∑

e∈E r(e) denotes the input size.

1The node-weighted k-way cut problem is the following: Given a graph with weights on the nodes and a collection of terminal nodes,
remove a smallest weight subset of non-terminal nodes so that the resulting graph has no path between the terminals.
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Theorem 1.1 For every non-negative constant integer s, there exists a randomized polynomial time algorithm to solve
HEDGE-k-CUT in hedgegraphs with span at most s that runs in time O(mMnks+k−s log n) and succeeds with probability
at least 1− 1/n.

We obtain a randomized polynomial time algorithm for HYPERGRAPH-k-CUT as a special case of the above
result since HYPERGRAPH-k-CUT reduces to HEDGE-k-CUT in 1-span hedgegraphs. For an input hypergraph, let n
denote the number of vertices and let M denote the sum of the cardinality of the hyperedges.

Corollary 1.2 There exists a randomized polynomial time algorithm to solve HYPERGRAPH-k-CUT that runs in time
O(Mn2k−1 log n) and succeeds with probability at least 1− 1/n.

Corollary 1.2 saves a factor of m in the run-time in comparison to Theorem 1.1 by a careful observation about
our algorithm from Theorem 1.1 as applied to 1-span hedgegraphs. We discuss this observation in the proof of
Corollary 1.2.

We mention that for the special case of k = 2, namely HYPERGRAPH-2-CUT, Ghaffari et al. gave an algorithm
based on random contractions [7]. Their algorithm picks a hyperedge to contract according to a distribution that
requires knowledge of the value of the optimum 2-cut. They suggest addressing this issue by a standard technique:
employ a binary search to find the optimum 2-cut value. In contrast, our contraction algorithm mentioned in
Corollary 1.2 does not require knowledge of the optimum cut value and is extremely easy to implement. More
importantly, it resolves the complexity of the more general problem of HYPERGRAPH-k-CUT.

We recall that a set C of hyperedges in a hypergraph G is said to be a k-cut-set if the removal of C from G results
in a hypergraph with at least k connected components. A k-cut-set in G is an optimal k-cut-set if its cardinality
is equal to the minimum number of hyperedges whose removal from G results in a hypergraph with at least k
connected components. Our algorithmic technique also leads to the following bound on the number of optimal
k-cut-sets:

Corollary 1.3 The number of optimal k-cut-sets in an n-vertex hypergraph is O(n2(k−1)).

We note that the bound stated in Corollary 1.3 above recovers (i) the bound on the number of optimal k-cut-sets
in graphs by Karger and Stein [13] as well as (ii) the bound on the number of optimal 2-cut-sets in hypergraphs [4,7].

As a final result, we generalize the techniques underlying the polynomial time approximation scheme for
HEDGE-2-CUT by Ghaffari et al. [7] to obtain a polynomial time approximation scheme for HEDGE-k-CUT. In
contrast to Theorem 1.1, this result holds for hedgegraphs with arbitrary span. A set C of hedges in a hedgegraph
G is said to be a hedge k-cut-set if the removal of C leads to at least k connected components in the underlying
graph. For α > 1, a hedge k-cut-set C is said to be an α-approximate minimum hedge k-cut-set if |C | is at most α
times the minimum number of hedges whose removal leads to at least k connected components in the underlying
graph.

Theorem 1.4 For any given ε > 0, there exists a randomized algorithm to find a (1+ ε)-approximate minimum
hedge k-cut-set in time MnO(log(1/ε)) log n that succeeds with probability at least 1− 1/n.

Setting ε to be a value that is strictly smaller than 1/λ, where λ is the value of a minimum hedge k-cut-set
in the input hedgegraph, we observe that a (1+ ε)-approximate minimum hedge k-cut-set would in fact be a
minimum hedge k-cut-set. Thus, Theorem 1.4 gives a quasi-polynomial time algorithm to solve HEDGE-k-CUT (the
value of λ can be found by a binary search). We mention that the run-time dependence on k in the algorithm
mentioned in Theorem 1.4 is in the exponent O(log(1/ε)) and hence the algorithm is not a polynomial-time
algorithm if k is not a constant.

Our algorithmic technique can also be used to bound the number of optimal k-cut-sets.

Theorem 1.5 The number of distinct minimum hedge k-cuts-set in an n-vertex hedgegraph with minimum hedge
k-cut-set value λ is nO(k+logλ).

We omit some of the proofs in this extended abstract—in particular the proof of Corollary 1.3, the proofs of
some of the helper lemmas associated with proving Theorem 1.4, and the proof of Theorem 1.5. We defer these
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proofs to the full version of the paper.

Organization. We present the preliminaries in Section 2 and prove Theorem 1.1 and Corollary 1.2 in Section 3.
We give an overview of the proof of Theorem 1.4 in Section 4.

1.2 Related work.
For GRAPH-k-CUT, when k is part of the input, Saran-Vazirani [22] designed a 2-approximation algorithm. Recently,
Manurangsi [19] showed that there is no efficient (2− ε)-approximation for any constant ε > 0 assuming the
Small Set Expansion Hypothesis [21].

Approximation algorithms for HYPERGRAPH-k-CUT, HYPERGRAPH-k-PARTITIONING, and more generally, submod-
ular partitioning problems have been well-studied in the literature. HYPERGRAPH-k-PARTITIONING is similar in flavor
to HYPERGRAPH-k-CUT but it counts a different objective. In HYPERGRAPH-k-PARTITIONING, the input is a hyper-
graph and the goal is to find a partitioning of the vertex set into k non-empty parts V1, . . . , Vk so that

∑k
i=1 |δ(Vi)|

is minimum (where δ(Vi) is the set of hyperedges that cross the part Vi). HYPERGRAPH-k-PARTITIONING and
HYPERGRAPH-k-CUT coincide to GRAPH-k-CUT when the input hypergraph is a graph. HYPERGRAPH-k-PARTITIONING

is a special case of the submodular k-partitioning problem since the hypergraph cut function is submodular. In the
submodular k-partitioning problem, the input is a non-negative submodular set function f : 2V → R+ (given by
the evaluation oracle) and the goal is to partition the ground set V into k non-empty sets V1, . . . , Vk in order to
minimize

∑k
i=1 f (Vi). Submodular k-partitioning for the case of k = 3 is known to admit efficient algorithms [20]

while approximation algorithms have been designed for larger constants k [20,28]. Submodular k-partitioning for
k = 4 admits efficient algorithms if f is symmetric, i.e., f (X ) = f (V \ X ) for all X ⊆ V [9].

We also mention that approximation algorithms are known for the fixed-terminal variant [2,28]. In submodular
k-way partitioning, the input is a non-negative submodular set function f : 2V → R+ (given by the evaluation
oracle) and distinct elements v1, . . . , vk ∈ V , and the goal is to find a partitioning of the ground set V into k
non-empty sets V1, . . . , Vk such that vi ∈ Vi ∀ i ∈ {1, . . . , k} in order to minimize

∑k
i=1 f (Vi). This generalizes

hypergraph k-way cut (where the goal is to delete the smallest number of hyperedges in order to disconnect a
given collection of k nodes). The current-best known approximation for submodular k-way partitioning is 2 for
general submodular functions and 3/2− 1/k for symmetric submodular functions.

The main motivation behind the definition of hedgegraphs is to understand the connectivity properties of
modern networks in which the reliability of links have certain dependencies. In particular, the links could depend
on a common resource. Two natural models have been considered depending on whether a link fails if either all
or at least one of the resources that the link depends upon fails [5]. In this work, our definition of hedgegraphs
considers the former model where a link fails only if all resources that the link depends upon fail. The term
hedgegraph for this model was given by Ghaffari et al. [7] who also showed that HEDGE-2-CUT has a polynomial
time approximation scheme.

2 Preliminaries

For positive integers a and b with a < b, we will follow the convention that the inverse binomial expression
�a

b

�−1

is 1. The set of positive integers less than or equal to ` is denoted as [`]. Let G = (V, E) be a hedgegraph. We
will denote an edge between two vertices a and b by an unordered tuple {a, b} and a hedge as a set of edges.
We emphasize that the hedges in a hedgegraph are disjoint—if an edge appears in ` different hedges, then it
contributes ` edges to the underlying graph. For a hedge e ∈ E, let G[e] denote the subgraph induced by the
edges in e. We emphasize that there are no isolated vertices in G[e]. Let V (e) denote the vertices in G[e]. We
recall that r(e) = |V (e)|. Let s(e) denote the number of connected components in G[e], i.e., the span of e. Let
s := max{s(e) : e ∈ E}, i.e., s denotes the span of the hedgegraph G. The hedgegraphs of interest in this work
satisfy s ≥ 1.

Our algorithm is based on repeated contractions. Our notion of the contraction operation is identical to the
well-known notion that appears in the literature. We define this operation formally for the sake of completeness.
Let U ⊆ V be a subset of vertices in G. We define G contract U , denoted G/U , to be a graph on vertex set
V ′ := (V − U)∪ {u}, where u is a newly introduced vertex, and on hedge set E′, where E′ is obtained as follows:
for each hedge e ∈ E, we define the hedge e′ to be

e′ := {({a, b} − U)∪ {u} : |{a, b} ∩ U |= 1, {a, b} ∈ e}
∪{{a, b} : {a, b} ∩ U = ;, {a, b} ∈ e}
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and obtain E′ := {e′ : e′ 6= ;, e ∈ E}. For a hedge e ∈ E, let C1, . . . , Cs denote the vertex sets of connected
components in G[e]. The hedgegraph obtained by contracting the hedge e, denoted G/e, is the hedgegraph
obtained by contracting the vertex set of each component in G[e] individually, i.e., G/e := G/C1/C2/ . . ./Cs. We
observe that contracting a hedge does not increase the span.

We need the following technical lemma.

Lemma 2.1 (Majorization inequality) (see Theorem 108 in [10]) Let y1, . . . , y` and x1, . . . , x` be two finite non-
increasing sequence of real numbers in [a, b] with the same sum. Let f : [a, b] → R be a convex function. If
∑ j

i=1 yi ≤
∑ j

i=1 x i for all 1≤ j ≤ `, then
∑̀

i=1

f (yi)≤
∑̀

i=1

f (x i).

3 Hedge k-Cut in Constant Span Graphs
In this section, we design an algorithm to solve HEDGE-k-CUT in constant span hedgegraphs. For ease of description
and analysis, we will focus on the minimum cardinality variant. We will specify how to adapt it to solve the
minimum cost variant at the end of the section.

Overview. We recall Karger’s random contraction algorithm for graphs (more generally, multigraphs): pick an
edge uniformly at random, contract it and repeat until there are 2 vertices left at which point output the edges
between the two vertices. In order to analyze the correctness, one can fix a min-cut C and argue that most of the
edges will not be in C . Indeed, suppose the value of the min-cut is λ, then every isolating cut (i.e., a cut induced by
a single vertex) has value at least λ, and hence the number of edges is at least nλ/2. Consequently, the probability
of picking an edge in C is at most 2/n. If we use the same algorithm as above to solve HYPERGRAPH-2-CUT, then it
is unclear how to analyze the resulting algorithm. This is due to the existence of n-vertex hypergraphs for which a
hyperedge from a min-cut could be chosen with probability as large as a constant and not at most 2/n. We avoid
this issue by choosing a hyperedge (or hedge) to contract from a different probability distribution that is not uniform.

The contraction algorithm. We will present an algorithm that outputs a particular minimum hedge k-cut-set
with inverse polynomial probability. Hence, returning a hedge k-cut-set with minimum value among the ones
output by polynomially many executions of the contraction algorithm will indeed find a minimum hedge k-cut-set
with constant probability. For the purposes of HYPERGRAPH-k-CUT, we recommend the reader to consider s = 1 in
the following algorithm and analysis (with the standard notion of hyperedge contraction).

Let n be the number of vertices in the input hedgegraph G = (V, E). For a hedge e ∈ E, we recall that r(e) is
the number of vertices incident to the edges in e and define

δe :=

¨
�n−r(e)

k−1

�

/
� n

k−1

�

if n− r(e)≥ k− 1, and

0 if n− r(e)< k− 1.

Our contraction algorithm will pick a hedge e with probability proportional to δe, contract it, update the values of
δe based on the new number of vertices and r(e) for every e ∈ E and repeat until the number of vertices is small.
When the number of vertices is at most a constant, we do a brute-force search. We emphasize that our brute-force
search outputs all minimum hedge k-cut-sets in the hedgegraph with constant number of vertices. We do this for
the purposes of convenience in the correctness analysis.

We note that a hedge e is present in every hedge k-cut-set of G if and only if |V (G/e)| < k. We recall that
|V (G/e)| = n−r(e)+s(e). Hence, if a hedge e is present in every hedge k-cut-set, then n−r(e)+1≤ n−r(e)+s(e)< k
and consequently, δe = 0. Thus, our algorithm will never contract hedges that are present in every hedge k-cut-set.
The algorithm is described in Figure 3.1.

We now analyze the correctness probability of the contraction algorithm. The following lemma shows a lower
bound on the number of hedges in G as a function of the minimum hedge k-cut-set value.

Lemma 3.1 Let G = (V, E) be a hedgegraph with m := |E| and λ being the minimum hedge k-cut-set value. Then,

m−λ≥
∑

e∈E

δe.
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HEDGE-k-CUT(G)

Input: Hedgegraph G = (V, E) with n := |V | and span s

1. Initialize a list of hedge k-cut-set candidates with E as an initial candidate.

2. Repeat:

(a) If n≤ 2(k− 1)(s+ 1), then compute all minimum hedge k-cut-sets in G by a brute-force search, add
them to the list of candidates and go to Step 3.

(b) For every e ∈ E such that δe = 0 and |V (G/e)| ≥ k:

i. compute all minimum hedge k-cut-sets in G/e by a brute-force search and add them to the list of
candidates.

(c) If
∑

e∈E δe = 0 go to Step 3.

(d) Choose a hedge e in G with probability proportional to δe.

(e) Contract and update: G← G/e, n← |V (G)| and update δe for every hedge e in the contracted graph
G.

3. Output all hedge k-cut-sets with minimum value among the candidates.

Figure 3.1. Contraction algorithm for constant span hedgegraphs.

Proof: We will prove the lemma by exhibiting an upper bound on λ by the probabilistic method. Let W be a
subset of k− 1 vertices chosen uniformly at random among all subset of vertices of size k− 1. Now consider the
k-partition of the vertex set given by P := {{v} |v ∈W} ∪ {V \W}. We claim that the expected value of the hedge
k-cut-set given by P is m−

∑

e∈E δe and hence λ≤ m−
∑

e∈E δe.
We now prove the claim. Let e be a hedge in G. The probability that e does not cross P is

�n−r(e)
k−1

�

/
� n

k−1

�

= δe.
Thus, the probability that e contributes to the hedge k-cut-set P is 1 − δe. The claim follows by linearity of
expectation.

�

We need the following combinatorial statement.

Lemma 3.2 Suppose n> 2(k− 1)(s+ 1). Then, for every hedge e with r(e) ∈ {2, . . . , n− k+ 1}, we have

δe

�

n− r(e) + s(e)
(k− 1)(s+ 1)

�−1

≥
�

n
(k− 1)(s+ 1)

�−1

.

Proof: If n− r(e) + s(e) < (k− 1)(s+ 1), then
�n−r(e)+s(e)
(k−1)(s+1)

�−1
= 1 using the convention fixed at the beginning of

Section 2. Since r(e)≤ n− k+ 1, we have
�n−r(e)

k−1

�

≥ 1. Thus,

δe =
�

n− r(e)
k− 1

��

n
k− 1

�−1

≥
�

n
k− 1

�−1

≥
�

n
(k− 1)(s+ 1)

�−1

since n> 2(k− 1)(s+ 1) and s ≥ 1.
For the rest of the proof, we will assume that n− r(e)+ s(e)≥ (k− 1)(s+ 1). We now note that the binomial in

the LHS of the lemma is well-defined and non-zero. For notational convenience, let t = (k− 1)(s+ 1). Then we
need to show that

δe

�

n− r(e) + s(e)
t

�−1

≥
�

n
t

�−1

. (1)
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We distinguish two cases based on whether s+ 1≤ r(e) or r(e)≤ s.

Case 1: Suppose s+ 1≤ r(e). We recall that s ≥ 1. Since s(e)≤ s, we have

δe

�

n− r(e) + s(e)
t

�−1

≥ δe

�

n− r(e) + s
t

�−1

.

Let x = r(e). Then it suffices to show that

�

n− x
k− 1

��

n
k− 1

�−1�n− x + s
t

�−1

≥
�

n
t

�−1

. (2)

Consider the LHS of (2) as a function of x . There exists a constant Cn,k,s (that depends on n, k and s) using which
the LHS can be written as

LHS(x)

= Cn,k,s
(n− x)!(n− x + s− t)!
(n− x − k+ 1)!(n− x + s)!

= Cn,k,s
(n− x + s− t)!

(n− x − k+ 1)!
∏s

i=1(n− x + i)

= Cn,k,s

�

1
∏t−s−1

i=k−1(n− x − i)

�

�

1
∏s

i=1(n− x + i)

�

.

The last equation follows since t = (k− 1)(s+ 1), and hence k− 1≤ t − s. From the above expression, we have
that LHS(x) is an increasing function of x . Thus we only need to show inequality (2) when x is the minimum
value in the domain of interest, i.e., x = r(e) = s+ 1. Hence, it suffices to show that

�

n− s− 1
k− 1

��

n
k− 1

�−1�n− 1
t

�−1�n
t

�

≥ 1. (3)

To show the above, we write out the LHS of (3):

LHS of (3) =
(n− s− 1)!(n− k+ 1)!
(n− s− k)!(n− 1)!(n− t)

=

∏s+k−1
i=s+1 (n− i)

(n− t)
∏k−2

i=1 (n− i)
.

In order to show that LHS of (3) ≥ 1, we need to show that the denominator is no greater than the numerator.
Taking negative logarithm of both the denominator and the numerator, we only need to show that

s+k−1
∑

i=s+1

(− log(n− i))≤
k−2
∑

i=1

(− log(n− i))− log(n− t). (4)

We recall that t = (k− 1)(s+ 1). We know that
∑s+k−1

i=s+1 (n− i) = (2n− 2s− k)(k− 1)/2 = (n− t) +
∑k−2

i=1 (n− i)
and

∑s+ j
i=s+1(n − i) <

∑ j
i=1(n − i) ∀ j ∈ [k − 2]. Since negative logarithm is a convex function, inequality (4)

follows by applying Lemma 2.1 using the choice ` := k− 1, yi := n− s− i, x i := n− i for every i ∈ [k− 2] and
yk−1 := n− s− (k− 1), xk−1 := n− t.

Case 2: Suppose r(e) ≤ s. By the assumptions of the lemma, we have r(e) ≥ 2 and hence s ≥ 2. We recall that
r(e) is the number of vertices incident to the edges in e while s(e) is the number of connected components in the
subgraph induced by the edges in e. Hence, r(e)− s(e)≥ r(e)/2. Consequently, we have

δe

�

n− r(e) + s(e)
t

�−1

≥ δe

�

n− r(e)/2
t

�−1

.
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Let x = r(e). Then it suffices to show that

�

n− x
k− 1

��

n
k− 1

�−1�n− x/2
t

�−1

≥
�

n
t

�−1

. (5)

Proceeding similarly to the analysis in Case 1 above, we can show that the LHS of (5) is an increasing function of
x . Then we only need to show inequality (5) for x = 2, i.e., we need to show that

�

n− 2
k− 1

��

n
k− 1

�−1�n− 1
t

�−1�n
t

�

≥ 1. (6)

Inequality (6) is a special case of inequality (3), which we have already proven in Case 1. This concludes our proof
for the combinatorial statement. �

We now show a lower bound on the success probability of the algorithm.

Theorem 3.3 For an n-vertex m-hedge input hedgegraph with span s, the contraction algorithm given above outputs
any fixed minimum hedge k-cut-set with probability at least

�

n
(k− 1)(s+ 1)

�−1

.

Moreover, for constant k and s, it can be implemented to run in time O(nmM).

Proof: For a hedgegraph H, let O(H) denote the set of optimal k-cut-sets in H. For C ∈ O(H), let q(H, C) denote
the probability that the algorithm executed on H outputs C . Let Gn,s be the set of n-vertex hedgegraphs with span
at most s. We define

qn := inf
H∈Gn,s

min
C∈O(H)

q(H, C).

We will prove by induction on n that qn ≥
� n
(k−1)(s+1)

�−1
. Let G = (V, E) ∈ Gn,s with C ∈ O(G). Let us define m := |E|

and λ := |C |.
We first note that the algorithm will terminate in finite time. This is because either the number of vertices is

strictly decreasing in each iteration and the algorithm reaches the base case in Step 2(a) or the condition is met in
Step 2(c). If C is in the list of candidates, it will be part of the output because it is a minimum hedge k-cut-set.
Therefore we just have to prove that C is in the list of candidates.

To base the induction, we consider n≤ 2(k− 1)(s+ 1). For such n, we have q(G, C) = 1 since the algorithm
solves such instances exactly by a brute-force search and returns all minimum hedge k-cut-sets, hence qn = 1.

We now show the induction step. We begin by addressing two easy cases: (i) Suppose δe = 0 for some hedge
e ∈ E \ C . Since e ∈ E \ C , we know that contracting e does not destroy C , so C is still a minimum hedge k-cut-set
in G/e. We also know that |V (G/e)| ≥ k. This is because contracting any hedge f with |V (G/ f )| < k would
destroy all hedge k-cut-sets but C survives the contraction of e. Since δe = 0 and |V (G/e)| ≥ k, Step 2(b)i will add
all minimum hedge k-cut-sets in G/e including C to the list of candidates, so q(G, C) = 1. (ii) Suppose C = E.
Then, all hedges are present in every hedge k-cut-set. Therefore, δe = 0 for every hedge e ∈ E. So the algorithm
executes only one iteration of Step 2 and will go to Step 3 after executing Step 2(c). Since all hedges are present
in every hedge k-cut-set, contracting any hedge e ∈ E will destroy all hedge k-cut-sets. Consequently, Step 2(b) of
the algorithm will not find any candidate and Step 3 will correctly return all hedges in G since the initialized list
contains E as a candidate. Hence, q(G, C) = 1.

Thus, we may assume that (i) n> 2(k− 1)(s+ 1), (ii) δe > 0 for all e ∈ E \ C , and (iii) E \ C 6= ;. In particular,
(ii) and (iii) imply that

∑

e∈E δe > 0. Let pe := δe/
∑

e∈E δe for every e ∈ E. We note that (pe)e∈E is a probability
distribution supported on the hedges because pe ≥ 0 ∀e ∈ E and

∑

e∈E pe = 1. The algorithm picks a hedge e to
contract according to the distribution defined by (pe)e∈E . We note that since

∑

e∈E δe > 0, we have δe > 0 for some
e ∈ E and thus we will contract some hedge.

The algorithm executed on G outputs C if the hedge e that it contracts is not in C and the algorithm executed
on the contracted hedgegraph G/e outputs C . Let e ∈ E \ C . The hedgegraph G/e has n− r(e) + s(e)< n vertices
and moreover, the span of G/e is at most s and hence G/e ∈ Gn−r(e)+s(e),s. Furthermore, the k-cut-set C is still a
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minimum hedge k-cut-set in G/e and hence C ∈ O(G/e). Thus, q(G/e, C) ≥ qn−r(e)+s(e) by definition. Thus, we
have

q(G, C)≥
∑

e∈E\C

pe · q(G/e, C)

≥
∑

e∈E\C

pe · qn−r(e)+s(e)

=
1

∑

e∈E δe

∑

e∈E\C

δe · qn−r(e)+s(e)

(since pe = δe/
∑

e∈E

δe)

≥
1

∑

e∈E δe

∑

e∈E\C

δe ·
�

n− r(e) + s(e)
(k− 1)(s+ 1)

�−1

.

(by induction hypothesis)

For every e ∈ E \ C , we know that δe > 0, which implies that n− r(e)≥ k− 1 by definition of δe. Moreover, by the
assumption on G, we have that n> 2(k− 1)(s+ 1). Hence, by Lemma 3.2, for every hedge e ∈ E \ C , we have

δe ·
�

n− r(e) + s(e)
(k− 1)(s+ 1)

�−1

≥
�

n
(k− 1)(s+ 1)

�−1

.

Substituting this in the previously derived lower bound for q(G, C), we have

q(G, C)≥
1

∑

e∈E δe

∑

e∈E\C

�

n
(k− 1)(s+ 1)

�−1

=
m−λ
∑

e∈E δe

�

n
(k− 1)(s+ 1)

�−1

(since |C |= λ and |E|= m)

≥
�

n
(k− 1)(s+ 1)

�−1

.

(by Lemma 3.1)

In all cases, we have shown that q(G, C) ≥
� n
(k−1)(s+1)

�−1
for an arbitrary G ∈ Gn,s and an arbitrary C ∈ O(G).

Therefore, we have

qn = inf
H∈Gn,s

min
C∈O(H)

q(H, C)≥
�

n
(k− 1)(s+ 1)

�−1

.

This concludes our proof of the correctness probability by induction.
We now analyze the running time of the contraction algorithm. A hedge contraction operation takes O(M)

time: To contract a hedge e, we construct a hash table of the vertices in the hedge, which also stores which
component each vertex is in. The second step is contraction. We process every hedge and mark a vertex if it needs
to be contracted. If so, we also mark which vertex it contracts to. Marking vertices takes O(1) time per vertex
encountered in a hedge as we only need to check if it is in the hash table that we constructed. Therefore, marking
vertices in all hedges takes O(M) time in total. Then, we replace all the marked vertices with the new vertices
and update the hedges accordingly in O(M) time. Hence the contraction operation can be implemented to run in
O(M) time.

We analyze the run-time for one iteration of Step 2. The brute-force operation in Step 2(a) takes O(Mk2(k−1)(s+1))
time. The for-loop in Step 2(b) applies at most O(m) contractions. Each contraction takes O(M) time and each
brute-force search for minimum hedge-k-cut-set takes O(Mkk+s) time. Hence Step 2(b) runs in time O(mM).
Step 2(c) verifies if

∑

e∈E δe = 0 which can be done in O(m) time. Step 2(d) picks a random hedge given a
probability distribution on the hedges which again takes O(m) time. Step 2(e) contracts and updates the δe values.
Contraction takes O(M) time. In order to update the δe values, we can precompute

� a
k−1

�

for all k − 1 ≤ a ≤ n
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in O(n(k− 1)) arithmetic operations. After every contraction, we can thus update δe for each e in constant time
using the table. Now, we can compute

∑

e∈E δe in O(|E|) = O(m) time. With these values, the probability pe for all
e ∈ E can be found in O(m) time. Hence, the total run-time of one iteration of Step 2 is O(mM).

Since the number of vertices strictly decreases after each contraction, the total number of iterations of Step 2 is
at most n. By the above discussion, the contraction algorithm can be implemented to run in O(nmM) time. We
mention that the bottleneck of the algorithm is Step 2(b)i. If Step 2(b)i is never executed, then the running time is
O(nM).

�

The contraction algorithm can be adapted to solve the min-weight variant, where each hedge e has weight
w(e), and the goal is to find a subset of hedges of minimum total weight to remove so that the underlying graph
has at least k connected components. In this case, we set δe := w(e)

�n−r(e)
k−1

�

/
� n

k−1

�

if n− r(e)≥ k− 1 and δe := 0 if
n− r(e)< k− 1, and run the same contraction algorithm as above. The correctness and run-time arguments are
analogous to the one in Theorem 3.3 and we avoid repeating in the interests of brevity.

Theorem 1.1 follows from Theorem 3.3 by executing the contraction algorithm
� n
(k−1)(s+1)

�

log n times and
outputting a hedge k-cut-set with the minimum value among all executions. We next focus on the special case of
HYPERGRAPH-k-CUT. We restate and prove Corollary 1.2.

Corollary 1.2 There exists a randomized polynomial time algorithm to solve HYPERGRAPH-k-CUT that runs in time
O(Mn2k−1 log n) and succeeds with probability at least 1− 1/n.

Proof: We will show that a hypergraph can be transformed to a hedgegraph with span one without changing the
value of any k-cut-set. By Theorem 1.1, such a transformation immediately gives a randomized polynomial time
algorithm to solve HYPERGRAPH-k-CUT that runs in time O(nmMn2(k−1) log n) and succeeds with probability at
least 1− 1/n. We discuss the run-time improvement after showing the transformation.

Let G = (V, E) be an input hypergraph. We construct a hedgegraph H = (V, E′), where E′ is obtained as follows:
for every hyperedge e ∈ E, fix an arbitrary vertex v ∈ e and introduce a hedge e′ ∈ E′ consisting of edges {v, u} for
all u ∈ e− {v}. Thus, the subgraph induced by the edges in e′, i.e., G[e′], is a star centered at v that is adjacent to
all the vertices in e and hence has span one. We emphasize that the constructed hedges are disjoint, i.e., if an edge
appears in ` constructed hedges, then the underlying graph has ` copies of the edge with each copy being present
in one of the hedges.

We now show that the value of any k-cut-set is preserved by this transformation. Let {V1, . . . , Vk} denote
a partitioning of the vertex set V into k non-empty parts. We claim that a hyperedge e crosses the partition
{V1, . . . , Vk} in the hypergraph G if and only if the corresponding hedge e′ crosses the partition {V1, . . . , Vk} in the
hedgegraph H. Suppose e′ crosses the partition {V1, . . . , Vk} in the hedgegraph H. Consider the center vertex v
of e′. Without loss of generality, let v ∈ V1. Then there exists a vertex u ∈ e′ ∩ Vj for some j ∈ [k] \ {1}. Now
u, v ∈ e, and hence e crosses {V1, . . . , Vk} in the hypergraph G. On the other hand, suppose e crosses the partition
{V1, . . . , Vk} in the hypergraph G. Consider the center vertex v of the star corresponding to e′. Without loss of
generality, let v ∈ V1 and suppose e intersects V1 and Vj for some j ∈ [k] \ {1}. Let u ∈ Vj ∩ e. Then v ∈ V1 while
u ∈ Vj and hence e′ crosses {V1, . . . , Vk} in the hedgegraph H.

We now argue that the algorithm will never execute Step 2(b)i for hedgegraphs with span one. For every
hedge e with δe = 0, we have that n− r(e)< k−1 and consequently |V (G/e)| = n− r(e)+ s(e) = n− r(e)+1< k.
Hence, we would have no hedges e in the hedgegraph with δe = 0 and |V (G/e)| ≥ k.

This observation shows that the running time is O(nM) as analyzed in the proof of Theorem 3.3. Now, the
corollary follows by running the modified contraction algorithm

� n
2(k−1)

�

log n times and returning the hedge
k-cut-set with minimum value among all executions.

�

4 PTAS for HEDGE-k-CUT

In this section, we provide a polynomial time approximation scheme and a quasi-polynomial time exact algorithm
for HEDGE-k-CUT for constant k. We generalize the contraction approach for HEDGE-2-CUT given by Ghaffari
et al. [7]. In their contraction algorithm, Ghaffari et al. distinguish large and small hedgegraphs based on the
existence of small, medium, and large hedges. We generalize these definitions for the purposes of HEDGE-k-CUT

and handle the cases similarly.
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Let G = (V, E) be a hedgegraph with n := |V |. We define a hedge e to be small if r(e)< n/(4(k− 1)), moderate
if n/(4(k− 1)) ≤ r(e) < n/(2(k− 1)), and large if r(e) ≥ n/(2(k− 1)). We define a hedgegraph to be large if it
contains at least one large hedge, and to be small otherwise. We use the algorithm in Figure 4.1.

Input: Hedgegraph G = (V, E)
Contract(G):

1. If G has k vertices, then return F = E.

2. Else if the graph underlying G has at least k components, then return F = ;.

3. Else, remove all hedges e such that n− r(e) + s(e)≤ k− 1 from G and add them to F .

4. If G is a small hedgegraph, then contract a hedge e chosen uniformly at random from E. Let the resulting
hedgegraph be H and return F ∪Contract(H).

5. Else, let L be the set of large and moderate hedges in G. Perform a branching step: go to one of the two
following branches with equal probability.

(a) Remove all large and moderate hedges from G to obtain a hedgegraph H1 and return F ∪ L ∪
Contract(H1).

(b) Contract a hedge e chosen uniformly at random from L to obtain a hedgegraph H2 and return F ∪
Contract(H2).

Figure 4.1. Contraction algorithm for arbitrary span hedgegraphs

We next give an overview of the analysis of the correctness probability of the algorithm. We omit some of the
proofs here and defer them to the full version of the paper. The following lemma bounds the number of branching
steps performed by the algorithm.

Lemma 4.1 The total number of branching steps in one execution of the contraction algorithm on an n-vertex
hedgegraph is at most

log 8(k−1)
8(k−1)−1

n.

The next two lemmas will be used to lower bound the success probability of the algorithm in returning a
(1+ ε)-approximate minimum hedge k-cut-set. We recall that for a hedge e, the number of vertices incident to the
edges in e is denoted by r(e).

Lemma 4.2 If G = (V, E) is an n-vertex small hedgegraph with C being a minimum hedge k-cut-set in G with value
λ, then

(i)
∑

e∈E\C r(e)≥ nλ/(2(k− 1)) and

(ii) m≥ 2λ.

Lemma 4.3 For every x ∈ (0,1/2) and c ≥ 4, we have (1− x) · (1− x/c)−3c/2 ≥ 1.

We now lower bound the success probability of the algorithm.

Lemma 4.4 For an n-vertex input hedgegraph, the contraction algorithm given above returns a (1+ ε)-approximate
minimum hedge k-cut-set with probability n−O(log(1/ε)). Moreover, it can be implemented to run in time O(Mn).

Proof: We first note that any hedge e with n− r(e) + s(e)≤ k− 1 must be in every hedge k-cut-set. By deleting
such hedges from the input hedgegraph and adding them to the output set F , the algorithm ensures that it never
contracts hedges such that the resulting hedgegraph has at most k− 1 components (vertices). So, the algorithm
always outputs a hedge k-cut-set. In the rest of the proof, we will lower bound the probability that the output is a
(1+ ε)-approximate minimum hedge k-cut-set for a fixed ε > 0.
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Let H(n,`) be the family of hedgegraphs on n vertices for which the contraction algorithm will always terminate
using at most ` branchings. We say that the algorithm succeeds on an input hedgegraph H if it outputs a (1+ ε)-
approximate minimum hedge k-cut-set of H. Let q(H) denote the probability that the algorithm succeeds on H.
We define

qn,` := inf
H∈H(n,`)

q(H).

For notational simplicity, let γ := ε/(1+ ε). We will prove by induction on n that

qn,` ≥ n−6(k−1) ·
�γ

2

�`

∀ n≥ k.

Let G ∈H(n,`), with vertex set V = [n] and hedge set E.
To base the induction, we consider n= k. For such n, the algorithm returns the only hedge k-cut-set of G, so

q(G) = 1 and hence qn,` = 1.
We next show the induction step. If G has at least k components, the algorithm returns the only minimum

hedge k-cut-set, which is the empty set, and hence q(G) = 1. Thus, we may assume that n > k and the graph
underlying G has fewer than k components. Let us fix a minimum hedge k-cut-set C of G and suppose that its
value is λ. We will first show that q(G) ≥ n−6(k−1) · (γ/2)` for all G ∈ H(n, l). We distinguish three cases and
handle them differently.

1. Suppose G is small. The algorithm succeeds if it contracts a hedge e that is not in C and the algorithm succeeds
on the resulting hedgegraph G/e which has n− r(e) + s(e) vertices. Hence, q(G) ≥ 1/m ·

∑

e∈E\C q(G/e).
We note that G/e ∈H(n− r(e) + s(e),`) and that n− r(e) + s(e)≤ n− r(e)/2 for any hedge e. Therefore,

q(G)

≥
1
m

∑

e∈E\C

q(G/e)

≥
1
m

∑

e∈E\C

qn−r(e)+s(e),`

(by definition of qn,l)

≥
1
m

∑

e∈E\C

(n− r(e) + s(e))−6(k−1) ·
�γ

2

�`

(by inductive hypothesis)

≥
1
m

∑

e∈E\C

�

n−
r(e)

2

�−6(k−1)

·
�γ

2

�`

(by n− r(e) + s(e)≤ n− r(e)/2)

=
m−λ

m

�γ

2

�` 1
m−λ

∑

e∈E\C

�

n−
r(e)

2

�−6(k−1)

.

Since k ≥ 2, and n− r(e)/2≥ 1 for all hedges e, the function f (r(e)) := (n− r(e)/2)−6(k−1) is convex as a
function of r(e) for every hedge e ∈ E. By Jensen’s inequality, we obtain

1
m−λ

∑

e∈E\C

�

n−
r(e)

2

�−6(k−1)

≥

�

n−

∑

e∈E\C r(e)

2(m−λ)

�−6(k−1)

.
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Therefore, we have

q(G)

≥
m−λ

m
·
�γ

2

�`

·

�

n−

∑

e∈E\C r(e)

2(m−λ)

�−6(k−1)

≥
m−λ

m
·
�γ

2

�`

·
�

n−
nλ/(2(k− 1))

2m

�−6(k−1)

(by Lemma 4.2)

=(1−
λ

m
)
�γ

2

�`

n−6(k−1)
�

1−
λ

4(k− 1)m

�−6(k−1)

=
�γ

2

�`

n−6(k−1) · (1− x)
�

1−
x

4(k− 1)

�−6(k−1)

.

(for x := λ/m ∈ (0,1/2))

The last equality follows by setting x := λ/m. We have x ∈ (0,1/2) since m ≥ 2λ by Lemma 4.2. We
recall that we would like to prove that q(G) ≥ n−6(k−1) · (γ/2)`, so we only need to prove that (1 −
x) (1− x/(4(k− 1)))−6(k−1) ≥ 1 for x ∈ (0,1/2). Let c = 4(k− 1), then (1− x) (1− x/(4(k− 1)))−6(k−1) =
(1−x)(1−x/c)−3c/2. Since k ≥ 2, we have c ≥ 4. Therefore, by Lemma 4.3, we have (1−x)(1−x/c)−3c/2 ≥ 1
for x ∈ (0,1/2). This concludes our proof that q(G)≥ n−6(k−1) · (γ/2)` in case 1.

2. Suppose G is large and |L\C | ≥ γ · |L|. The algorithm succeeds if it goes to branch (b), contracts a hedge
e ∈ L \ C , and succeeds on the resulting graph H2 = G/e. By the condition that |L\C | ≥ γ · |L|, the
probability of picking a hedge e ∈ L \ C is γ. Hence, q(G)≥ 1/2 · γ · q(H2). The algorithm contracts either
a moderate or a large hedge e for which r(e) ≥ n/(4(k − 1)) and H2 has n − r(e) + s(e) vertices where
n− r(e)+s(e)≤ n− r(e)/2. Hence, H2 has at most n− r(e)/2≤ n−n/(8(k−1)) = ((8(k−1)−1)/(8(k−1))·n
vertices. We also note that H2 ∈H(|V (H2)|,`− 1). Therefore,

q(G)≥
1
2
· γ · q(H2)

≥
1
2
· γ · q|V (H2)|,`−1

(by definition of qn,l)

≥
1
2
· γ · (|V (H2)|)

−6(k−1) ·
�γ

2

�`−1

(by inductive hypothesis)

≥
1
2
· γ ·

�

(8(k− 1)− 1)
8(k− 1)

· n
�−6(k−1) �γ

2

�`−1

(by |V (H2)| ≤
(8(k− 1)− 1)

8(k− 1)
· n)

=
�

(8(k− 1)− 1)
8(k− 1)

· n
�−6(k−1) �γ

2

�`

≥n−6(k−1) ·
�γ

2

�`

.

3. Suppose G is large and |L\C |< γ · |L|. Since |L\C |< γ · |L|, we have that |L∩C | = |L|− |L \C |> (1−γ) · |L|.
We will show that the algorithm succeeds if it goes to branch (a), and succeeds on the resulting graph
H1 = G − L.

Suppose the algorithm follows branch (a). The value of a minimum hedge k-cut-set in H1 is at most
|C − L| = |C | − |L ∩ C | < |C | − (1− γ)|L|. If the algorithm returns a (1+ ε)-approximate minimum hedge
k-cut-set of H1, then the algorithm would return a set of size at most (1+ε)(|C |−|L|(1−γ)) = |C |(1+ε)−|L|.
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Consequently, the algorithm returns a hedge k-cut-set of size at most (|C |(1+ε)−|L|)+ |L| = |C |(1+ε) for G.
This shows that if the algorithm returns a (1+ ε)-approximate minimum hedge k-cut-set in the hedgegraph
H1 obtained in branch (a), then the algorithm returns a (1+ ε)-approximate minimum hedge k-cut-set in
the hedgegraph G. Also, by definition, H1 ∈H(n,`− 1). Therefore,

q(G)≥
1
2
· q(H1)≥

1
2
· qn,`−1.

We will now prove that q(G)≥ n−6(k−1) · (γ/2)` by induction on `. The following claim shows the base case
of the statement, i.e., for `= 0:

Claim 4.1 q(G)≥ n−6(k−1) for all n≥ k and G ∈H(n, 0).

Proof: We prove by induction on n. For the base case where n = k, we have q(G) = 1 ≥ n−6(k−1) for all
G ∈ H(n, 0). For the inductive step, consider G ∈ H(n, 0) to be a hedgegraph on n > k vertices and m
hedges with a fixed minimum hedge k-cut-set C in G. We note that G is small since G ∈H(n, 0), therefore
we are in case 1. Hence, we have

q(G)≥ n−6(k−1) ·
�γ

2

�`

= n−6(k−1).

by the same proof as that of case 1. �

By Claim 4.1, we have the base case q(G)≥ n−6(k−1) for all G ∈H(n, 0). For the induction step, we use the
lower bound and the inductive hypothesis to obtain

q(G)≥
1
2
· qn,`−1

≥
1
2
·
�γ

2

�`−1
· n−6(k−1)

≥
�γ

2

�`

· n−6(k−1).

In all cases, we have shown that q(G)≥ (γ/2)` · n−6(k−1) for an arbitrary G ∈H(n,`). Therefore, for all n≥ k,
we have

qn,` = inf
H∈H(n,`)

q(H)≥ n−6(k−1) ·
�γ

2

�`

.

We know that γ < 1. Substituting the upper bound on ` from Lemma 4.1, we obtain that

qn,` ≥ n−6(k−1)
�γ

2

�`

≥ n−6(k−1)
�γ

2

�log 8(k−1)
8(k−1)−1

n
.

If ε≥ 1, then γ≥ 1/2, so qn,` is at least inverse polynomial in n. If ε < 1, then γ = ε/(1+ε)> ε/2. So the success
probability is at least

n−6(k−1)
�ε

4

�log 8(k−1)
8(k−1)−1

n
= n−O(log 1

ε ).

We now argue that the contraction algorithm can be implemented to run in O(Mn) time. In the contraction
algorithm, finding the set of hedges e with n− r(e)+ s(e)≤ k−1 and finding the set of large and moderate hedges
can each be done in O(m) time. Similar to the proof of Theorem 3.3, a contraction step can be implemented to
run in O(M) time by processing hedges one by one to mark contracted vertices and replacing them with a new
vertex. Since in one execution of the contraction algorithm there can be at most n contractions, the contraction
algorithm can be implemented to run in O(Mn) time.
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Theorem 1.4 follows from Lemma 4.4 by executing the contraction algorithm nO(log 1/ε) log n times and returning
a hedge k-cut-set with the minimum value among all executions.

Setting ε to be a value that is strictly smaller than 1/λ, where λ is the value of a minimum hedge k-cut-set
in the input hedgegraph, we observe that a (1+ ε)-approximate minimum hedge k-cut-set would in fact be a
minimum hedge k-cut-set. Hence, we have the following corollary (the value λ can be found by a binary search).

Corollary 4.5 There exists a randomized algorithm to solve HEDGE-k-CUT that runs in time MnO(logλ) log n, where λ
is the value of a minimum hedge k-cut-set in the input hedgegraph.
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