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Abstract

The capacitated vehicle routing problem (CVRP) is one of the most well known NP-hard combinatorial
optimization problems. Single depot CVRP with a general metric is NP-hard even for fixed capacity 3, while
polynomial time solvable for fixed capacity 2. We consider the variant of CVRP where restocking is available.
We show that if there is a constant number of depots, then the problem can be solved in polynomial time when
capacity is 2.

1 Introduction

In this paper, we study a variant of the capacitated vehicle routing problem (CVRP). In the CVRP problem, there is
a single depot, and multiple customers each have unit demand. Each vehicle has a capacity of Q. Each vehicle
travels from the depot, delivers the inventory to at most Q customers, and returns to the depot. We consider
the variant that allows restocking. After completing a trip, the vehicle can return to any depot, and restock the
inventory for more delivery. The objective is to minimize the total distance traveled over all vehicles.

We now introduce the case for multiple depots. In the multiple depots capacitated vehicle routing with restocking
problem (MDCVRRP), there are k depots with enough inventory and n customers with unit demand. There are
vehicles with capacity Q. A depot that owns at least one vehicle is called a base. Each vehicle is associated with a
base. A vehicle starts from its base, and can restock at any depot before any further delivery. We are interested in
finding a tour for each vehicle so that the demand of all the customers can be satisfied, each vehicle returns to its
base after it completes all deliveries, and the total travel distance is minimized.

Since the traveling salesman problem (TSP) is a special case of MDCVRRP when the number of depot equals
one and the capacity of the vehicle is unlimited, MDCVRRP is strongly NP-hard even in the Euclidean plane [8].
MDCVRRP is closely related to the classic CVRP Almost all the special cases of CVRP studied in the literature are
NP-hard. The only polynomial solvable special case of CVRP that relates to our result is the case when Q < 2 and
the number of depots equals one [2]. However, for Q < 2, it is unknown if the multiple depot case can be solved
in polynomial time. For a general metric, CVRP is shown to be APX-complete for any fixed Q > 3 [2].

Studying the capacity 2 case is more than a theoretical curiosity. The practical application concerns with large
containers (skips), where each vehicle can only pick up one or two containers. A typical example is waste collection
from the collection area to landfill [1].

It turns out the number of non-base depots, not the number of depots, is the most important parameter of
the computational complexity. Intuitively, one approach to the problem is to generate tours by looking at the
graph instead of looking at each vehicle. This would give us the optimal result when every depot is a base.
However, because we disregard vehicles, there might be a tour that contains only non-base depots, which cannot
be completed by any vehicle. Therefore, we need to take into account if a non-base depot is used in a tour, there is
a base matched to that tour. It is unclear how to handle this constraint other than trying all of them, and hence
blowing up the running time significantly as the number of non-base depots grows.

Our Contribution We show that if there are a constant number of depots, then MDCVRRP with capacity 2 is
solvable in polynomial time. In fact, we prove a stronger result. Even if the number of depots is large, as long as
the number of the non-base depots is a constant, then MDCVRRP with capacity 2 can be solved in polynomial time.
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Organization The rest of this paper is organized as follows. In section 2, we introduce some notations and
notions we used in our work, and describe the problem. In section 3, we introduce T-bones, and solving the
minimum cost T-bone problem. In section 4, we introduce constrained forests and find how many there can be. In
section 5, we describe an algorithm for MDCVRRP with capacity 2 which runs in polynomial time for a constant
number of non-base depots.

2 Preliminaries

Let G = (V, E) be an undirected complete graph. Often V is partitioned into two sets of vertices D and U, hence
we will abuse the notation and write G = (D, U, E) to denote G = (V,E), where V = D U U. The vertices in D are
called depots. We fix a set B C D of depots to be the set of bases. We define B = B, the set of non-base depots. The
set U represents the set of n customers. Each customer has a unit demand, and each vehicle has capacity 2. Let
¢ : E — R* be a non-negative function over the edges, which we call the cost. The cost function c is a metric if ¢ is
non-negative and satisfies the triangle inequality, that is, c(uw) + c(wv) = c(uv) for every u,v,w € V. A closed
walk is a sequence of vertices and edges, v;,e1,V,...,€,_1,Vy, Such that v; = v,, e; € E and is precisely an edge
containing v; and v;,;.

Let F C E be a set of edges. F covers a vertex v € V if v € e for some e € F. We use V(F) = UeeF e to denote
the vertex set of F, which is the set of vertices covered by F. We use c(F) = ZuveF c(uv) to denote the total cost
of F. We use F[B] to denote the set of edges in F that have both endpoints in B. Let G be a graph, then G[B]
is the induced subgraph whose vertex set is B and whose edge set is E[B]. If a statement applies to graphs, then
we extend a statement to a set of edges F by considering the graph (V(F),F). For any F C E, we use Odd(F)
to denote the set of odd degree vertices. Note that |Odd(F)| is always even. A forest is a set of edges without
cycles. The degree of a vertex v for a set of edges F, denoted as degy(v), is the number of edges in F incident to
v. A maximal set of connected vertices is called a component. A component with at least two vertices is called a
non-trivial component.

If uv and vw are edges, the splitting-off operation [7] on v removes the edge uv and vw, and add an edge uw.
This operation maintains the parity of the degree of v, and preserves the degree of all other vertices.

We consider edges with multiplicities. When we write S C E, we are allowing duplicate edges in S, even when
the corresponding edge appeared only once in E. Now, we define the abstract problem we try to solve in detail.

Problem 1 (2-MDCVRRP’(p)) _
INPUT: A complete graph G = (D, U, E), B C D such that |B| < p, and a metric cost ¢ : E — R.
OUTPUT: A minimum cost set of closed walks W on G under the following constraints:

1. each closed walk in ‘W contains a depot in B;
2. each closed walk in W contains at most 2 successive vertices in U;

3. every vertex in U appears in some walk.

Instead of a set of closed walks, we just have to find the set of edges (with multiplicity) used by the set of
closed walks. Indeed, by the Eulerian theorem [4], there is a linear time algorithm to decompose the edges into
a set of closed walks given a union of the edges of some closed walks. Due to the fact we have a metric, there
exists an optimal solution where no vertex in U appeared more than once in the walk. Hence, we can solve the
following problem instead, which transform the problem on walks into finding a collection of edges.

Problem 2 (2-MDCVRRP(p)) _
INPUT: A complete graph G = (D, U, E), B C D such that |B| < p, and a metric cost ¢ : E — R.
OUTPUT: A minimum cost collection of edges W in G (allow duplicates) such that:

1. each non-trivial component of W contains a depot in B;
2. degy, (v) is even for every vertex, and equals 2 if v € U;
3. W[U]is a matching.

In particular, each non-trivial component of a solution W of 2-MDCVRRP(p) requires only a single vehicle to
traverse.



Note the problem 2-MDCVRRP(p) captures the case when there are at most p depots without a vehicle. We
define 2-MDCVRRP to be 2-MDCVRRP(00). Namely, there is no bound on the size of B].

A matching is a set of disjoint edges. For a set T C V of even cardinality. A set of edges J C E (with multiplicity)
is called a T-join if deg,;(v) is odd if and only if v € T.

Lemma 2.1 ([6]) Given an undirected graph G = (V,E) and a set T C V of even cardinality, there exists a T-join in
G if and only if |C N T| is even for each component C of G.

Theorem 2.2 ( [5]) Given an undirected graph G = (V,E) and a set T C V of even cardinality, if the edge costs are
nonnegative, the minimum cost T-join can be found in O(|V|3) time.

We emphasize the algorithm are split into two different parts, where they are independent of each other, and
should be read independently.

3 T-Bones

Consider a complete graph G = (D, U, E) with a metric cost c. For T C D such that |T| is even, a set of edges J is a
T-bone, if J is a T-join, deg;(u) = 2 for all u € U, and J[U] is a matching. Note we do allow parallel edges in J.
Note in particular, each non-trivial component in a T-bone J contains at least one vertex in D. Indeed, consider
a non-trivial component of J that contains a vertex u € U. Because J[U] is a matching and deg;(u) = 2, then u
has a neighbor that is not in U, therefore must be an element in D.
We will show that finding the minimum cost T-bone in G can reduce to solving a minimum cost T-join problem
on the auxiliary graph of G. First, we describe the construction of the auxiliary graph G’ of G:

1. for each u € U, duplicate a vertex u’. Let U’ = {u/|u € U}.
2. letV =UUU'UD;

3. let E'=Eu{uvlu’ eU’,v € D};

4, letG'=(D,UUU,E");

See Figure 3.1b for an example of the auxiliary graph. We consider a cost function ¢’ : E* — R as follows.
c/'(uv)=c(uv) forallu,v €V, and ¢’(u'v) = c(uv) forallu € U and v € D.
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(a) The original graph and a T-bone overlay. Note we

highlight that there are two parallel edges between ug (b) The auxiliary graph and the corresponding TUU U U’-
and d, in the T-bone, but the original graph does not. join overlay.

)

Figure 3.1: An example of T-bone computation where |D| = 2, |U| = 5 and T = D. The gray edges are the
underlying graph, and the black edges are the overlay.

Lemma 3.1 For any T’ such that UU U’ € T’ and |T’| is even, the minimum cost T’-join J* in G’ such that
deg,.(u) =1 for allu € UU U’ can be found in O(|V|?).



Proof: Here we present a constructive proof. First, find a minimum cost T’-join J* in O(|V|*) time. Because the
graph is complete, it has only one component. Additionally, |T’| is even. Therefore J* exists by Lemma 2.1. If
there exists u € UU U’ such that deg;.(u) > 1, we can apply the splitting-off operation on u with respect to J* until
we get only one edge incident to u. Indeed, if u € U, then it only incidents to vertices in U U D, and G'[DU U]
is a complete graph, so splitting-off is feasible. If u € U’, then it only incidents to vertices in D, and G’[D] is a
complete graph, so splitting-off is also feasible. This operation can be applied at most |E| times, as the number
of edges decreases by one after each splitting-off operation. Due to the triangle inequality, splitting-off does not
increase the total cost of the T’-join. Hence, we can find the desired structure in O(|V|3) time. O

Lemma 3.2 The minimum cost T-bone in G can be found in O(|V|3).

Proof: Let T"=T UUUU’. Consider an arbitrary minimum cost T’-join J*' in G’ such that deg;.(u) = 1 for all
u€ UUU’. Shrink J* to J by contracting each vertex u € U with the corresponding vertex u’ € U’. It is easy to
check that J is a T-bone in G with ¢’(J*) = c(J).

On the other hand, consider an arbitrary minimum cost T-bone J* in G, we can construct a T'-join J’ in G’ as
follows:

1. start with J' =J*;
2. for each vertex u € U, find an edge ud € J’ for some d € D. Delete edge ud from J’ and add edge u'd to J’.

It is easy to check that J' is a T'-join in G’ and ¢’(J’) = c(J*).
From the above, the minimum cost T-bone can be found by solving the minimum cost T’-join problem on G,
which implies the minimum cost T-bone can be found in O(|V|?). m|

MINCOSTTBONE(G = (D, U, E),c,T)
U« {u|lueU}
V' eDUUUU’
E' —«Eu{uvlu eU’,v € D}
G — (V/, E/)
T"—TuUUU
¢’ a function s.t. ¢/(u’'v)=c(uv)ifue U,v €D and ¢'(uv) =c(uv) ifu,vy €V
J’ « minimum cost T’-join in G’ with cost ¢’
while deg;,(u) > 1 for someu e UUU":
splitting off u arbitrarily in J’
J « identify each u and v’ in J/, whereu € U
return J

Figure 3.2: The algorithm for computing a min-cost T-bone

4 Counting Constrained Forests

Recall we have a graph G = (D, U, E), with metric cost function ¢ and a set of bases B C D. A constrained forest F
is a forest such that each non-trivial component of F has exactly one vertex in B, degp(v) =2 forall v e UNV(F),
and F[U] is a matching.

We show a useful property of the constrained forests.

Lemma 4.1 Let F be a constrained forest, each non-trivial component in the forest contains at least one vertex in B.

Proof: A non-trivial component of F is a tree. A tree with at least 2 vertices contains at least 2 leaves. No vertex
in U can be a leaf because deg(u) = 2 for all u € UNV(F). Hence all leaves are in D. Exactly one leaf is in B,
hence at least one leaf has to be in B. O

Intuitively, each non-trivial component in a constrained forest tries to match non-bases to a base. In the context
of the vehicle routing, a constrained forest tries to specify a vehicle that visits a non-base depot. As a consequence,
there can be at most |B| non-trivial components. See Figure 5.1a for an example of a constrained forest.

We proceed with a sequence of lemmas that eventually counts the number of constrained forests.



Lemma 4.2 Let Yy,...,Y; be disjoint subsets of D such that each set contains exactly one vertex in B and at least

one vertex in B. Let B = Ur)n Bandq= |§/|. The number of constrained forests F with non-trivial components
Cy,...,C,, such that C;ND =Y, is at most (q + 1)7 ‘n%.

Proof: Let F be a constrained forest with non-trivial components C, ..., C, such that C; N D =Y;. We look at tree
T; = F[C;]. T; contains |Y;| vertices in D, and at most 2(]Y;| — 1) vertices in U. Recall Cayley’s formula, which
states the number of labeled trees on n vertices is n"2 [3]. We can fix a spanning tree on Y;, and assign at most 2
vertices in U on each edge. Since each vertex in U has degree 2, we obtain a bijection from these labeled spanning
trees to a non-trivial component in a constrained forest. Therefore, there can be no more than |Y;|%=2|y|2(%=D
trees that can act as the ith non-trivial component of a constrained forest satisfies the property in the lemma. Each
non-trivial component is independent, hence we take their product.

t
l_[ |y;|/¥i=2| g )20 =D
i=1

t
< l_[(q +1)¥i2p2%i1
i=1

=(q + 1)Zm(H-2p2 3, %11
=(q+1)7'n%.
o

Lemma 4.3 Let X C B. For Xq,...,X, a partition of X. The number of constrained forests F with non-trivial
components Cy, ..., C,, such that C; N B =X, is O(k'(q + 1)7"tn??), where q = |X|.

Proof: We pick a sequence of t distinct vertices in B, s1,...,s,, there are O(k") choices. For each of the choices, by
the Lemma 4.2, we take Y; = X; U {s;}, and obtain the number of constrained forests F satisfies the condition of
this lemma is O(k‘(q + 1)7tn29). ]

Lemma 4.4 Let X C B a set of q elements. The number of constrained forests F such that V(F)NB = X is
0(k%(q + 1)*n?9).

Proof: There can be no more than g* ways to partition X to t classes. By Lemma 4.3, the total number of
constrained forest is bounded by

q
> a'kt(q+1)'n% = 0(k%(q + 1)*'n*).
t=1

Lemma 4.5 There are at most O(kPn?P) different constrained forests, where p = |B| and is a constant.

Proof: Take X over all subsets of B. Using Lemma 4.4, we have The number of constrained forests is therefore at
most Zé):o (Z)O(kq(q +1)1n%1) = 0(2PkP(p + 1)’ n??) = O(kPn?P). |

5 The Algorithm for 2-MDCVRRP(p)

In this section, we solve 2-MDCVRRP(p). Intuitively, the algorithm tries to first specify which vehicle goes to which
non-base depots (and also which path it takes), and then ask for the optimal solution satisfies the constraints.
Since we do not know which vehicle goes to the non-base depots, we will try all possibilities. A constrained forest
encodes such information.

We define a particular induced subgraph Gy of G. The new graph Gy is obtained from G by retaining the base
depots B, non-base depots in V(F), and remove all covered U vertices in V(F). Formally, let D, = BU (D NV (F)),
Up =U\V(F), Vg = Dp UUyg, Ep = E[V]. We define Gy = G[Vz] = (Dg, U, E). See Figure 5.1b for an example
of V.

We say a constrained forest F spans a feasible solution W of 2-MDCVRRP(p), if F € W, and F covers the same
set of non-base depots as W, i.e. V(F)NB = V(W) N B. Our algorithm exploits the fact that each feasible solution
to 2-MDCVRRP(p) is a union of a constrained forest F and a T-bone for some suitably defined T in an Gy. See
Figure 5.1 for an example. This is the main goal of the next lemma.



: m V Q
O OO0OO0OO0OO0OO0 (OO

(a) A constrained forest F for graph G. (b) Corresponding vertices in V; and the T-bone J. The
dotted elements are not in V. The elements contained in
a circle are elements in T.

(c) A feasible solution W obtained as the union of constrained forest F and T-bone J.

Figure 5.1: An example of how a solution is obtained. White circle are elements in U, black square are elements in
B, and gray square are elements in B.

Lemma 5.1 Every feasible solution W contains a constrained forest that spans W.

Proof: A path is elementary if it starts and ends in a vertex in D, and contains no other vertices in D. Let P;, ..., P,
be all the elementary paths in W. The fact that degy, (u) = 2 for all u € U shows P,,..., P,, partitions the edges of
W. We define W, = W, and

W. =

L

Wi ifBAV(W,_; \P)#BNV(W)
Wi_;\ P; otherwise '

Intuitively, we remove paths such that the set of non-base depots covered does not change. Let F = W,,, we
want to show it is a constrained forest and it is contained in W. Note that degy, (v) = 2 for allv € UNnV(W;),

V(W,)NB = V(W) NB, and W;[U] is a matching for all i. We show that each non-trivial component of F has
exactly one vertex in B.

Note that if P, C F, then V(F \ P,)NB € V(F) N B. Because otherwise, P; would not be present in W;. Assume
that F has a component C that contains more than one vertex in B, say b and b’. Consider a path in F from
b to b’, which can be decomposed into a sequence of elementary paths, let one of them be P;. Now, we claim
BNV(F\P)=BnV(F). Once we remove P;, any vertices in C \ B is still in V(F \ P;). Any vertex in C N B can
reach either b or b’ after removal of P;. Hence V(F )NB = V(F \ P,)NB, a contradiction. Similarly one can show
there is no cycles in F. Assume there is a cycle and it contains some P;, then one can see V(F \ P,)NB = V(F)NB.
A contradiction. m|

Lemma 5.2 Let W be a feasible solution to 2-MDCVRRP(p) of G = (D, U, E). Let F be a constrained forest that spans
W. Let J =W \F, then J is a T-bone of Gy, where T = Odd(F).

Proof: All 3 properties of J as a T-bone of Gy is satisfied. Indeed, J is a T-join because all vertices in W has even
degree, thus Odd(W \ F) = Odd(F) = T. deg;(u) = degy, (u) = 2 for all u € Ug. J[U;] is a matching because
WI[U] is a matching. O

Finally, we extend the above lemma to characterize the optimal solution of 2-MDCVRRP(p).

Lemma 5.3 Let W* be an optimal solution to 2-MDCVRRP(p) of G = (D, U, E). Let F be a constrained forest that
spans W*. Let T = Odd(F). Let J be a minimum cost T-bone of Gy, then W = J UF is an optimal solution to
2-MDCVRRP(p) on G.

Proof: By Lemma 5.2, W*\ F is a T-bone of G;. Hence we have c(J) < c(W*)—c(F). Note that J UF is a feasible
solution to 2-MDCVRRP(p) of G. W is also a solution to 2-MDCVRRP(p) of G, therefore c(W*) < c(W). It follows
that

cWH)<c(W)=c(J)+c(F)<c(W*)—c(F)+c(F)=c(W¥)

Therefore we have shown W is an optimal solution. O



Sowe(G = (D, U, E),c)

for F a constrained forest in G:
V; <~ BUBNV(F)U(U\V(F))
T «— Odd(F)
G < G[V;]
J « MINCOSTTBONE(Gy, ¢|gqy,, T)
We«JUF
add W into the list of candidates

return the minimum cost candidate

Figure 5.2: The algorithm for solving the 2-MDCVRRP.

The minimum cost T-bone in the previous theorem always exists because the graph is a complete graph and |T| is
even. At this point, we obtain the algorithm in Figure 5.2. Next, we analyze its running time.

Theorem 5.4 (Main Theorem) 2-MDCVRRP(p) can be solved in O(|V|? - kPn?P) time, where k is the number of
depots and n is the number of customers.

Proof: Let F be the set of constrained forests of G. By Lemma 5.3, the optimal solution can be found by enumerating
all the possible constrained forests and finding minimum cost Odd(F)-join in Gy. Hence Figure 5.2 is correct.
The for-loop ran |F| time. The running time inside the for-loop is dominated by finding the T-bone, which takes
O(|V]®) time. Together, we obtain the desired running time of O(|V|3|F]) time. By Lemma 4.5, there are at most
O(kPn?P) different constrained forests, and we obtain the desired running time. O

In particular, because p < k— 1, this implies if the number of depots k is a constant, we also have a polynomial
time algorithm.

Theorem 5.5 Let k be a constant. 2-MDCVRRP can be solved in O(n?*™1) time if there is at most k depots.

This matches the previous best result for a single depot [2]. We can also show if the number of non-base depots is
unbounded, the problem is NP-hard.

Theorem 5.6 2-MDCVRRP is NP-hard in general.

Proof: Indeed, every TSP instance can transform into a 2-MDCVRRP instance. For each point in TSB we create
a depot and two customers at the same location. Let there be exactly one base. It’s easy to see the optimal
2-MDCVRRP tour would reflect an optimal tour in the TSP O
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