
c© 2018 Chao Xu

CUTS AND CONNECTIVITY IN GRAPHS AND HYPERGRAPHS

BY

CHAO XU

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science

in the Graduate College of the
University of Illinois at Urbana-Champaign, 2018

Urbana, Illinois

Doctoral Committee:

Professor Chandra Chekuri, Chair
Assistant Professor Karthekeyan Chandrasekaran, Director of Research
Professor Jeff Erickson
Associate Professor Tamás Király, Eötvös Loránd University

Abstract

In this thesis, we consider cut and connectivity problems on graphs, digraphs, hypergraphs

and hedgegraphs.

The main results are the following:

• We introduce a faster algorithm for finding the reduced graph in element-connectivity

computations. We also show its application to node separation.

• We present several results on hypergraph cuts, including (a) a near linear time algo-

rithm for finding a (2 + ε)-approximate min-cut, (b) an algorithm to find a representa-

tion of all min-cuts in the same time as finding a single min-cut, (c) a sparse subgraph

that preserves connectivity for hypergraphs and (d) a near linear-time hypergraph cut

sparsifier.

• We design the first randomized polynomial time algorithm for the hypergraph k-cut

problem whose complexity has been open for over 20 years. The algorithm generalizes

to hedgegraphs with constant span.

• We address the complexity gap between global vs. fixed-terminal cuts problems in

digraphs by presenting a 2− 1
448

approximation algorithm for the global bicut problem.

ii

To my parents and my wife.

iii

Acknowledgments

This thesis would not have been possible without the help and encouragement of many

people.

First and foremost, I would like to thank my advisors Karthik Chandrasekaran and Chan-

dra Chekuri. I am fortunate to have the opportunity to work with both of them. Karthik’s

enthusiasm and diligence for research has been a great inspiration. Chandra’s help for

establishing my academic connections has been invaluable. Both helped me greatly with

research, writing, presentation skills and academic aspects in general. They were also able

to understand my situations and gave me important advices in various aspects of my life.

I am very fortunate to be a student of Jeff Erickson for the first two years. Jeff helped me

greatly with my first search for a summer internship and was always there to give me useful

advice.

Two other UIUC faculties I’m particularly grateful to are Sariel Har-Peled and Ruta

Mehta. Sariel worked with me in my early graduate years, helping me to view everything in

a randomized fashion. Ruta was always an encouragement, attending many of my talks and

giving me useful feedback.

I would also like to thank Boris Aronov for hosting me in NYU Tandon and Ken-ichi

Kawarabayashi for hosting me at the National Institute of Informatics. I spent a productive

and memorable summer with each.

I would also like to thank the long list of people who have given advice or collaborated with

me – Michael Bender, Kristóf Bérczi, Takuro Fukunaga, Tamás Király, Yusuke Kobayashi,

Euiwoong Lee, Joseph Mitchell, Thapanapong Rukkanchanunt, Steven Skiena, Yutaro Ya-

maguchi, and Qian Zhang.

I am exceedingly grateful to the entire theory group. The group was a supportive com-

munity the year I arrived, and it still maintained a tight and caring culture when the group

grew so large that a table in Mandarin Wok was insufficient. Especially, I would like to

thank the theory students who had serious research discussions with me, even if no paper

came out of it (yet) — Hsien-Chih Chang, Shalmoli Gupta, Konstantinos Koiliaris, Vivek

Madan, Sahand Mozaffari, Kent Quanrud, Ben Raichel, and Xilin Yu.

Lastly, thank you to all my friends and family. Their unrelenting support has lifted my

spirits even when faced with difficult times. My parents have always believed and been

proud of me. Finally, I would like to thank my wife, Cheng, whose love and support have

been indispensable toward my growth as a person.

iv

Table of Contents

Chapter 1 Introduction . 1
1.1 Notations . 2
1.2 Thesis contribution and organization . 5

Chapter 2 Element connectivity . 12
2.1 Preliminaries . 14
2.2 Element-connectivity and connections to submodularity 15
2.3 Algorithmic aspects of element-connectivity 16
2.4 Flow tree for separation . 22
2.5 Open problems . 23

Chapter 3 Hypergraph cuts . 24
3.1 Overview . 25
3.2 Preliminaries . 29
3.3 k-trimmed certificate and faster min-cut algorithm for small λ 34
3.4 Canonical decomposition and Hypercactus Representation 40
3.5 Near-linear time (2 + ε) approximation for min-cut 51
3.6 Strength estimation and cut sparsifiers . 56
3.7 Open problems . 67

Chapter 4 Hypergraph k-cut and constant span hedge k-cut 68
4.1 Results . 70
4.2 Preliminaries . 73
4.3 Hedge k-Cut in Constant Span Hedgegraphs 74
4.4 RPTAS for Hedge-k-Cut . 85
4.5 Open Problems . 96

Chapter 5 Global vs. Fixed-terminal cuts . 97
5.1 st-Sep-k-Cut . 97
5.2 s-Size-k-Cut . 99
5.3 (s, ∗, t)-Linear-3-Cut . 101
5.4 BiCut . 106
5.5 Open problems . 130

References . 131

v

Chapter 1: Introduction

One of the classic problems in combinatorial optimization is the min-st-cut problem. In

the min-st-cut problem, the input is a graph and the output is a minimum cardinality set of

edges such that their removal disconnects the nodes s and t. A similar problem, the min-cut

problem, asks for a set of edges such that their removal disconnects some pair of nodes. In

particular, the min-cut is the minimum among min-st-cuts over all nodes s and t.

One of the themes of this thesis is to study how min-cuts behave in hypergraphs. Hyper-

graphs generalize graphs by allowing each edge to contain more than two nodes. Hypergraphs

are useful for modeling systems in a variety of areas. For example, they have applications in

clustering and VLSI design [1,2]. Richer graph models present challenges in designing algo-

rithms due to their additional complexity. The size of a hypergraph is the sum of its edge

sizes, which can be much larger than the number of edges. This thesis features algorithms

that match the state of the art graph algorithms in terms of the running time, and they are

conceptually simple. We show that several structural properties and algorithmic results for

min-cut in graphs also hold for hypergraphs.

We also show that the min-k-cut problem, a generalization of the min-cut problem, can

be solved in randomized polynomial time for hypergraphs. In fact, the algorithmic ideas

extend to solve the min-k-cut-problem in an even richer graph model, namely hedgegraphs

of constant span. Ghaffari, Karger, and Panigrahi identified the notion of hedgegraphs as

a convenient graph model for the following scenarios [3]: It is often the case in modern

networks that a collection of edges in a graph are interdependent and consequently could

fail together—e.g., interconnected nodes in an optical network that share/rely on a single

resource.

The other theme of the thesis is the phenomenon of complexity gap between global and

fixed-terminal cut problems in graphs and digraphs. A typical fixed-terminal problem is

the following: Consider a constant k and some property P that captures the idea of “dis-

connected”. Given a graph (digraph) G, and a k-tuple of nodes T , we are interested in

removing a minimum number of the edges F , such that T satisfies property P in G − F .

The nodes in T are called terminals. In the global variant, we are given G. We want to find

a minimum set of edges F such that there exists some k-tuple of terminals T that satisfies

P in G − F . The solution to the global variant is the minimum over the solutions over

the fixed-terminal problem. If the fixed-terminal problem can be solved in polynomial time,

then the global problem can be solved in polynomial time by trying all possible k-tuple of

terminals. Interestingly, there are examples where the global problem is strictly easier: the

1

global problem is in P and the fixed-terminal problem is NP-Hard, or the global problem

allows a strictly better approximation ratio. This thesis makes progress in this area by

demonstrating problems where their global and fixed-terminal variants exhibit a complexity

gap.

1.1 NOTATIONS

The set of positive integers less than or equal to ` is denoted as [`]. The Õ notation

suppresses poly-logarithmic factors. A problem is tractable if every instance of it can be

solved in polynomial time with respect to the instance size.

1.1.1 Set functions

Let f : 2V → R be a real-valued set function defined over a finite set V . The function f is

symmetric if f(A) = f(V \A) for all A ⊆ V . The function f is submodular if f(A)+f(B) ≥
f(A ∪ B) + f(A ∩ B) for all A,B ⊆ V . The function f is non-negative if f(A) ≥ 0 for all

A ⊆ V . For a set function f on V and a set family F ⊆ 2V , we define f(F) =
∑

S∈F f(S). A

k-partition of a set V is a family of k disjoint non-empty subsets of V , such that their union

is V . A k-subpartition of V is a k-partition of some set U ⊆ V . For a given set function f

over V , a non-trivial minimizer is a set S such that f(S) = min{f(T) | ∅ (T (V }. The

domain of f , denoted dom(f), is V . We define λf (x, y) = min{f(S) : S ⊆ V ,x ∈ S, y 6∈ S},
and λ(f) = minx,y∈V λf (x, y). Hence λ(f) is the value of a non-trivial minimizer of f .

1.1.2 Graphs and cuts

We introduce some common notions. We refer the reader to a standard textbook, e.g. [4],

for concepts related to graphs and digraphs. Let V be a finite set of nodes.

Graphs. A graph G = (V ,E) on node set V has a set of edges E, where an edge is a set

of at most two nodes. A self-loop is a singleton edge. An edge e crosses X if e ∩ X and

e ∩ (V \X) are both non-empty. The size of a graph is the number of edges in the graph.

Digraphs. A digraph D = (V ,E) has a set of (directed) edges E, where an edge is an

ordered pair of nodes. For an edge (u, v), we sometimes write uv. The head of an edge uv

is u, and the tail is v. The size of a digraph is the number of edges in the digraph.

2

Hypergraphs. A hypergraphH = (V ,E) has a set of hyperedges E, where each hyperedge

e is a subset of nodes. A hyperedge e crosses X if e ∩ X and e ∩ (V \ X) are both non-

empty. The size of a hypergraph is
∑

e∈E |e|. The rank of a hypergraph, denoted by r, is

maxe∈E |e|. We note that graphs are hypergraphs of rank 2. A hypergraph H ′ = (V ′,E ′) is a

subhypergraph of H = (V ,E) if V ′ ⊆ V and E ′ ⊆ E. Thus a subhypergraph of H is obtained

by deleting nodes and hyperedges. For U ⊆ V , we denote the induced subhypergraph of H

on U as H[U] = (U , {e | e ⊆ U , e ∈ E}).

Hedgegraphs. Consider a multigraph G = (V ,E ′). Let E be a partition of the edges in

E ′. We say H = (V ,E) is a hedgegraph, and G is the graph underlying the hedgegraph H.

Each partition class in E is called a hedge. A hedge e crosses X if some edge in e crosses

X. The size of a hedgegraph is the size of its underlying multigraph.

For a graph (hypergraph/hedgegraph) H = (V ,E), we define the function δH : 2V → E

with δH(S) being the set of all edges (hyperedges/hedges) in H that cross S. We will drop

H from the subscript if the graph is clear from the context. The number of crossing edges

(hyperedges/hedges) is dH(S) = |δH(S)|. A graph (digraph/hypergraph/hedgegraph) is ca-

pacitated if there is a non-negative capacity function c : E → R+ associated with it. If

all capacities are 1 we call it uncapacitated; we allow multiple copies of an edge (hyper-

edges/hedges) in the uncapacitated case. We define cH : 2V → R+ as the cut function,

the total capacity of all crossing edges (hyperedges/hedges), namely cH(S) =
∑

e∈δH(S) c(e).

In the uncapacitated case, cH(S) = |δH(S)| = dH(S). A isolated set in a graph (hyper-

graph/hedgegraph) G is a non-empty set X of nodes such that dH(X) = 0. A component

is a inclusion-wise minimal isolated set. Components in graphs (hypergraph/hedgegraph)

form a partition of the nodes.

For pairwise disjoint node subsets A1, . . . ,Ak, we let EH(A1, . . . ,Ak) = {e | e ∩ Ai 6=
∅, i ∈ [k]} to be the set of edges (hyperedges/hedges) that crosses each of A1, . . . ,Ak. The

function dH(A1, . . . ,Ak) =
∑

e∈EH(A1,...,Ak) c(e) denotes the total capacity of the edges (hy-

peredges/hedges) in EH(A1, . . . ,Ak).

In a directed graph D, ED(X,Y) is the set of edges with tail in X and head in Y . We use

δinD (X) := ED(Y ,X), δoutD (X) := δinD (V \X), dinD (X) := |δinD (X)| and doutD (X) := |δout(X)|.
For a set family F , we say an edge (hedge) e crosses F if it crosses any set in F . For a

subset S of nodes, we define E[S] to be the set of edges in the induced subgraph G[S].

3

1.1.3 Connectivity

We discuss some connectivity concepts in undirected graphs.

Edge-connectivity. In undirected graphs, the edge-connectivity between two nodes s

and t is the maximum number of edge disjoint st-paths. It is denoted λG(s, t). By Menger’s

theorem, denote λG(s, t) is same as the min-st-cut (S,V \ S). The edge-connectivity of G,

denoted λ(G), is the minimum st-edge-connectivity over all distinct s, t ∈ V . The edge-

connectivity of G is equivalent to min∅(S(V cG(S). This cut based definition immediately

generalizes to hypergraphs. Under this definition, a cut S is a min-cut of H if c(S) = λ(H).

A graph (hypergraph) is k-edge-connected if λ(H) ≥ k.

Node-connectivity. The node-connectivity between u and v, denoted by κG(u, v) is the

maximum number of internally node-disjoint paths between u and v. The node-connectivity

of G, denoted κ(G), is the minimum st-node-connectivity over all distinct s, t ∈ V .

Element-connectivity. Let T ⊆ V be a set of terminals; nodes in V \ T are referred

to as non-terminals. For any two distinct terminals u, v ∈ T , the element-connectivity

between u and v is the maximum number of uv-paths in G that are pairwise “element”-

disjoint where elements consist of edges and non-terminals. We note that the element-disjoint

paths need not be disjoint in terminals. We use κ′G(u, v) to denote the element-connectivity

between u and v. The element-connectivity of G, denoted κ′(G), is the minimum st-element-

connectivity over all distinct s, t ∈ V .

1.1.4 k-cut and k-partition

The statements in this section hold for graphs, hypergraphs and hedgegraphs. We only

give the description for graphs for simplicity. Let P be a k-partition and H a graph. The

k-partition P is a k-way-partition for a set of k terminals T if each set in the family contains

exactly one terminal. More formally, P is a k-way-partition for terminals T if |P ∩T | = 1 for

all P ∈ P . The value of P in H, denoted cH(P), is the total capacity of the edges crossing

it. That is, cH(P) :=
∑

e∈δH(P),P∈P c(e). The problems k-way-Part and k-Part are the

problems of finding a minimum value k-way-partition and a minimum value k-partition

respectively, for a given graph.

A cut (S,V −S) is a 2-partition of the nodes. We will abuse the notation and call a set S

as a cut to refer to cut (S,V − S) in graphs. An st-cut is a cut S such that |S ∩ {s, t}| = 1.

A k-cut is another name for a k-partition of the nodes. A k-cut-set (or cut-set if k = 2) is

4

an inclusion-wise minimal set of edges such that its removal disconnects the graph into at

least k components. For a set of k terminals T , a k-cut-set is a k-way-cut-set if there is no

path between any pair of nodes in T . The Graph-k-Cut (Graph-k-Way-Cut) problem

takes a graph (and k terminals) and asks for a minimum capacity k-cut-set (k-way-cut-set).

The k-way-partitions and k-way-cut-sets are closely related. The edges crossing a k-way-

partition is a k-way-cut-set, and every k-way-cut-set arises this way. Consequently, k-way-

Part (k-Part, respectively) and Graph-k-Way-Cut (Graph-k-Cut, respectively) are

equivalent problems.

When we discuss a graph (digraph/hypergraph/hedgegraph), we always use n to denote

number of nodes, m the number of edges (hyperedges/hedges) and p the size.

1.1.5 List of problems

Here we give a master index of properties that we consider. These properties correspond

to the list of problems that we consider in this thesis (See Table 1.1).

Definition 1.1. A pair of terminals s and t is

• disconnected in a hypergraph/hedgegraph if s and t are in different connected compo-

nents,

• disconnected in a graph/digraph if there is no path from s to t and there is no path

from t to s.

For a set of k terminals T , it is disconnected if it is pairwise disconnected.

Definition 1.2. In a digraph, a k-tuple of terminals T = (t1, . . . , tk) is linearly-disconnected

if there is no path from ti to tj for all i < j.

Definition 1.3. In a graph, consider a k-tuple of terminals T = (t1, . . . , tk) and a k-tuple

of positive integers s = (s1, . . . , sk). The terminals T is s-size-disconnected if there exist a

k-partition (S1, . . . ,Sk), such that ti ∈ Si, |Si| ≥ si and |δ(Si)| = 0 for all i.

1.2 THESIS CONTRIBUTION AND ORGANIZATION

The thesis consists of four body chapters with each chapter being self-contained. The

algorithmic results of chapters 2, 4 and 5 are summarized in Table 1.2.

5

1.2.1 Element connectivity

Chapter 2 is concerned with element-connectivity, a concept in between edge-connectivity

and node-connectivity. The chapter is an adaptation of the paper [5]. For a graph G =

(V ,E), let T ⊆ V be a set of terminals that form an independent set. A well-known result,

known as the reduction lemma, shows that every edge between two nodes in V \ T , can

be either deleted or contracted while maintaining element-connectivity between all pairs of

terminals. Hence applying it sequentially, we obtain a bipartite graph with terminals as one

part of the bipartition. The resulting graph is called a reduced graph. Very basic questions

concerning element connectivity have not been explored in contrast to the substantial lit-

erature on edge and node connectivity. For instance, how fast can element-connectivity be

computed? How fast can the graph H promised by the reduction lemma be computed?

In particular, we obtain the following theorem.

Theorem 1.1. Let G be a graph on n nodes and m edges and T a set of terminals. There

is an O(|T |nm) time algorithm that given G and T outputs the reduced graph of G.

The above theorem improves the naive running time of O(|T |2nm2).

The key observation that underlies the algorithms is that a symmetric submodular function

can be defined over the terminal set T that corresponds to the element-connectivity between

then. This in turn allows us to compute and exploit a Gomory-Hu tree for this function.

In another result we show that a result of Hassin and Levin [6] on flow-trees for separation

with node capacities can be easily understood via element-connectivity and the existence of

Gomory-Hu tree for it.

1.2.2 Hypergraph cuts

Chapter 3 is concerned with hypergraph cuts. We generalize structural and algorithmic

properties of graph cuts to hypergraphs. The chapter is an adaptation of the papers [7, 8].

Finding a k-certificate in near-linear time Every connected graph contains a span-

ning tree that certifies the connectivity of the graph. A k-edge-connected graph has a

similar subgraph with O(kn) edges, known as a k-certificate, that certifies that the graph

is k-edge-connected. A k-certificate is powerful in algorithm design because it is a sparse

graph that demonstrates a lower bound on the connectivity of the given graph. Most im-

portantly, finding a k-certificate takes only linear time [9]. Therefore, finding a k-certificate

is a preprocessing step in various graph algorithms [10]. A k-certificate also exists for a

k-edge-connected hypergraph [11]. To find a k-certificate of a hypergraph, one repeatedly

6

strips off 1-certificates. Unfortunately, it is too slow for large k. Moreover, the size of the

resulting certificate could still be large, i.e. Ω(kn2).

We show that a k-certificate for a hypergraph can also be found in linear time. Moreover,

the total size of the k-certificate that we find is O(kn).

Theorem 1.2. Let H be a hypergraph on n nodes and m edges with size p. There is an

O(p) time algorithm that given H and k outputs a k-certificate H ′ of H such that the size

of H ′ is O(kn).

In uncapacitated settings, the result gives us faster algorithms for finding min-cuts, ap-

proximate min-cuts and max flows. In capacitated settings, k-certificates are essential in

finding cut sparsifiers.

Finding all min-cuts quickly The cactus representation of a graph is a graph with

O(n) edges that captures all min-cuts of a graph [12]. Finding all min-cuts is equivalent to

computing the cactus representation. It took many years of continuous progress to reach

the fastest time and smallest space algorithm [13–17]. Finding a cactus representation takes

the same amount of time as finding a single min-cut, and the space complexity is linear. A

hypercactus representation captures all min-cut information of a hypergraph [18,19]. Finding

the hypercactus representation takes polynomial time, but it is much slower than finding a

min-cut.

We show that finding a cactus representation is no harder than finding a single min-

cut. Our algorithm is much simpler than the previous algorithms use the conceptually clean

Cunningham’s decomposition framework [20]. Finally, the algorithm takes linear space. The

framework depends on finding splits, min-cuts that separate at least 2 nodes on each side.

The approach alone is already prohibitive: finding a split is no easier than finding a min-cut.

The main algorithmic insight is a near-linear time split oracle. The oracle either finds a

split or gives us two nodes whose contraction does not destroy any min-cut. We obtain the

following theorem.

Theorem 1.3. Let H be a hypergraph on n nodes with size p. A compact O(n) sized data

structure that encodes all min-cuts can be found in O(np+ n2 log n) time and O(p) space.

As a consequence of the proof, we obtain a
(
n
2

)
upper bound on the number of distinct

min-cut-sets.

(2 + ε) min-cut approximation for hypergraphs Matula showed that a (2 + ε) ap-

proximation for the min-cut of uncapacitated graphs can be computed in deterministic

7

O(m/ε) time [21]. The algorithm generalizes to capacitated graphs and runs in O(1
ε
(m log n+

n log2 n)) time (as mentioned by Karger [22]). We show that Matula’s algorithm extends to

hypergraphs.

Theorem 1.4. Let H be a hypergraph on n nodes with size p. There is an O(ε−1(p +

n log n) log n) time algorithm that given H and ε outputs a cut with value at most (2 + ε)

times a min-cut.

In fact, the algorithm generalizes to a special class of submodular functions which behaves

similar to hypergraph cut functions.

Cut-sparsifiers A sparse subgraph that preserves all cut values to within a (1± ε) factor

is a cut-sparsifier. Benczúr and Karger, in their seminal work [23], showed a (1 ± ε)-cut-

sparsifier exists using a random sampling approach. Moreover, the sparsifier can be computed

in near-linear time by a randomized algorithm. A cut sparsifier for a hypergraph also exists

using the same sampling algorithm as that of Benczúr and Karger [11,24]? However, finding

the probability distribution is the bottleneck. The sampling probability is inversely propor-

tional to the strength of an edge. The strength measures the importance of an edge to the

cuts that it crosses. We provide a near-linear time algorithm to approximate the strength

in hypergraphs. As a consequence, we get a near-linear time algorithm for a hypergraph cut

sparsifier.

Theorem 1.5. Let H be a rank r hypergraph on n nodes with size p. There is an O(p log2 n log p)

time algorithm that given H and ε outputs a (1±ε)-cut sparsifier of H of O(nr(r+log n)/ε2)

edges with high probability.

1.2.3 Hypergraph k-cut

In Chapter 4, we present a randomized polynomial time algorithm for hypergraph k-cut.

It is an adaptation of the paper [25].

In the hypergraph k-cut problem, the input is a hypergraph, and the goal is to find a

smallest subset of hyperedges whose removal ensures that the remaining hypergraph has at

least k connected components. This problem is known to be at least as hard as the densest k-

subgraph problem when k is part of the input [26]. We focus on this problem for constant k.

Goldschmidt and Hochbaum showed that a min-k-cut in graphs can be found in polynomial

time [27]. Subsequent works improved the running time using techniques including divide

and conquer, tree packing, and randomized contractions [28–31]. Finding a min k-cut of a

8

hypergraph has applications in network reliability and clustering in VLSI design [1, 2]. We

present a randomized polynomial time algorithm to solve the hypergraph k-cut problem.

Theorem 1.6. Let H be a hypergraph on n nodes with size p. There is a randomized

O(pn2k−1 log n) time algorithm that given H outputs a min k-cut and succeeds with probability

at least 1− 1/n.

The algorithmic technique extends to solve the more general hedge k-cut problem when

the subgraph induced by every hedge has a constant number of connected components.

The algorithm is based on random contractions akin to Karger’s min cut algorithm. The

main technical contribution is a non-uniform distribution over the hedges (hyperedges) so

that random contraction of hedges (hyperedges) chosen from the distribution succeeds in

returning an optimum solution with large probability. In addition, we present an alternative

contraction based randomized polynomial time approximation scheme for hedge k-cut in

arbitrary span hedgegraphs. The algorithm and analysis also lead to bounds on the number

of optimal solutions to the respective problems.

1.2.4 Global vs. Fixed-terminal cut

Chapter 5, we consider global and fixed-terminal cut problems in both graphs and di-

graphs. The section is based on [32,33].

st-Sep-k-Cut Given s and t, we are interested in deleting minimum number of edges so

that there are at least k components with s and t being in different components. The

problem is denoted as st-Sep-k-Cut. The complexity of st-Sep-k-Cut was raised as an

open problem by Queyranne [34]. We show that the problem can be solved in polynomial

time.

Theorem 1.7. There is a polynomial-time algorithm to solve st-Sep-k-Cut.

s-Size-k-Cut Consider a fixed tuple s = (s1, . . . , sk) ∈ Nk. In the s-Size-k-Cut problem,

we want to remove edges so the remaining graph can be partitioned such that the ith set

contains at least si nodes. When k = 2, consider ordering the cuts by value. A randomized

algorithm is known for arbitrary k with running time Õ(n2σ), where σ is the sum of the

elements in s [35]. We improve the running time and also give a deterministic algorithm.

Theorem 1.8. Let s = (s1, . . . , sk) and si ≥ si+1 for all i ≤ k− 1. s-Size-k-Cut for graph

G can be solved in O(n2(σ−s1+2)) time, where σ =
∑k

i=1 si and n is the number of nodes of

G.

9

The algorithm uses Thorup’s tree packing algorithm to enumerate possible candidates for

the optimal solution. The fixed-terminal variant is NP-Hard for k ≥ 3 since Graph-k-Cut

reduces to s-Size-k-Way-Cut.

(s, ∗, t)-Linear-3-Cut We discuss Linear-k-Cut, another generalization of Graph-k-

Cut to directed graphs. The fixed-terminal variant was introduced by Erbacher et al.

in [36] and it is NP-Hard. We study the case when k = 3 and we fix 2 of the nodes.

Formally, given a digraph and two nodes s and t, we want to remove a minimum number of

edges, such that there exists some node r 6∈ {s, t}, such that there is no path from s to t, r

to t and r to s. This is the (s, ∗, t)-Linear-3-Cut problem. We devise an approximation

algorithm for (s, ∗, t)-Linear-3-Cut.

Theorem 1.9. There is a polynomial-time 3/2-approximation algorithm for (s, ∗, t)-Linear-
-3-Cut.

The 3/2 approximation is crucial for an approximation algorithm for BiCut, which we

introduce next.

BiCut The bicut problem is another natural generalization of min-cut to digraphs. In the

fixed-terminal bicut problem, the input is a digraph with two specified nodes and the goal is

to find a smallest subset of edges whose removal ensures that the two specified nodes cannot

reach each other. In the global bicut problem, the input is a digraph and the goal is to find

a smallest subset of edges whose removal ensures that there exist two nodes that cannot

reach each other. Fixed-terminal bicut is NP-Hard, admits a simple 2-approximation, and

does not admit a (2− ε)-approximation for any constant ε > 0 assuming the unique games

conjecture [37]. We improve on the approximability of the global variant in comparison to

the fixed-terminal variant.

Theorem 1.10. There is a polynomial-time (2 − 1/448)-approximation algorithm for Bi-

Cut.

10

Global Fixed-Terminal Structure Removal Property
Graph-k-Cut Graph-k-Way-Cut graph edges disconnected

Hypergraph-k-Cut Hypergraph-k-Way-Cut hypergraph edges disconnected
Hedge-k-Cut Hedge-k-Way-Cut hedgegraph hedge disconnected

BiCut st-BiCut digraph edges disconnected
Linear-k-Cut Linear-k-Way-Cut digraph edges linear-disconnected
s-Size-k-Cut s-Size-k-Way-Cut graph edges s-size-disconnected

st-Sep-k-Cut graph edges {s, t} ⊆ T , disconnected

Table 1.1: List of problems and property.

Problem Complexity Reference
Graph-k-Cut P [27]

Graph-k-Way-Cut NP-Hard iff k ≥ 3 [38]
Hypergraph-k-Cut RP Theorem 4.1

Hypergraph-k-Way-Cut NP-Hard iff k ≥ 3 Graph-k-Way-Cut
Hedge-k-Cut RP if constant span, RPTAS if arbitrary span Theorem 4.1

Hedge-k-Way-Cut NP-Hard for all k when span ≥ 2 and rank ≥ 4 [39,40]
BiCut unknown if NP-Hard, (2− 1/448)-approximable Theorem 5.6
st-BiCut NP-Hard, (2− ε)-inapproximable [37]

Linear-k-Cut P if k = 2, otherwise unknown
Linear-k-Way-Cut P iff k = 2 [41]

(s, ∗, t)-Linear-3-Cut 3
2 -approximation, no hardness known Theorem 5.5

st-Sep-k-Cut P Theorem 5.1
s-Size-k-Cut P Theorem 5.4

s-Size-k-Way-Cut NP-Hard iff k ≥ 3 Graph-k-Way-Cut

Table 1.2: Complexity of the global and fixed-terminal problems. The inapproximability
results are under the assumption of the unique games conjecture.

11

Chapter 2: Element connectivity

Let G = (V ,E) be an undirected simple graph. Let T ⊆ V to be a set of terminals that

forms a independent set. The edges E and nodes in V \ T are called elements. Recall the

element connectivity between s ∈ T and t ∈ T is the maximum number of element disjoint

paths between s and t. Via Menger’s theorem one can characterize element connectivity in

an equivalent way via cuts. That is, the element connectivity of s and t equals the minimum

number of elements such that their removal disconnect s and t. See Figure 2.1 for example.

s t s t

Figure 2.1: The black nodes are the terminals. The left image shows 4 element-disjoint
st-paths. The right image shows removing 4 elements disconnects s and t. κ′(s, t) = 4

Element-connectivity can be seen to generalize edge-connectivity by letting T = V . At

the same time, element-connectivity is also closely related to node-connectivity. If T is an

independent set then κ′G(u, v) is the maximum number of paths from u to v that are disjoint in

non-terminals. In particular, if T contains exactly two nodes s and t, then κG(s, t) = κ′G(s, t).

Element-connectivity has found several applications in network design, routing and related

problems, some of which we will discuss later. Several of these applications rely on an

interesting graph reduction operation shown first by Hind and Oellermann [42]. To describe

their result we use the notation G/pq to denote the graph obtained from G by contracting

the edge pq, and G− pq to denote the graph with edge pq deleted.

Theorem 2.1 (Hind & Oellermann [42]). Let G = (V ,E) be an undirected graph and

T ⊆ V be a terminal-set such that κ′G(T) ≥ k. Let pq be any edge where p, q ∈ V \ T . Then

κ′G1
(T) ≥ k or κ′G2

(T) ≥ k where G1 = G− pq and G2 = G/pq.

Chekuri and Korula generalized the theorem to show that the same reduction operation

also preserves the local element-connectivity of every pair of terminals.

Theorem 2.2 (Chekuri & Korula [43]). Let G = (V ,E) be an undirected graph and T ⊆ V

be a terminal-set. Let pq be any edge where p, q ∈ V \ T and let G1 = G − pq and G2 =

G/pq. Then one of the following holds: (i) ∀u, v ∈ T , κ′G1
(u, v) = κ′G(u, v) (ii) ∀u, v ∈ T ,

κ′G2
(u, v) = κ′G(u, v).

12

Min Cut Min Cut(WHP) All-pair All-pair (WHP) Reduce

λ Õ(m) [44,45] Õ(m) [46] Õ(n27/8) [47] Õ(nm) [48] -

κ′ O(|T | MF(n,m)) same as all-pair O(|T | MF(n,m)) Õ(|T |nω) [49],O(mω) [50] O(|T |nm)

κ O(n7/4m) [51] Õ(nm) [52] O(n9/2) [53] Õ(n2+ω) [49] -

Figure 2.2: The running time for various algorithms for a graph with n nodes and m edges
and terminal nodes |T |. The row for κ′ is our result. MF(n,m) is the running time for a
maximum flow on unit capacity directed graph with n nodes and m edges, which is known to
be O(

√
nm) [53]. WHP indicates with high probability bounds for randomized algorithms.

ω is the matrix multiplication constant.

We refer to the preceding theorem as the reduction lemma following the usage from [43].

By repeatedly applying the reduction lemma, as observed in prior work, we obtain the

following corollary.

Corollary 2.1. Given a graph G = (V ,E) and a terminal set T ⊆ V there is a minor

H = (V ′,E ′) of G such that (i) T ⊆ V ′ and (ii) V ′ \ T is an independent set in H and (iii)

κ′H(u, v) = κ′G(u, v) for all u, v ∈ T . In particular, if T is an independent set in G then H

is a bipartite graph with bipartition (T ,V ′ \ T).

The minor H in the previous corollary is called a reduced graph of G. A graph is reduced

if there are no edges between non-terminals.

Remark A reduced graph G = (V ,E) where the terminals T form an independent set can

be interpreted as a hypergraph H = (T ,E ′). H contains an edge ev for every non-terminal

v in G, where ev is the set of neighbors of v in G. Element-connectivity of terminals T in G

is equivalent to hypergraph edge-connectivity in H.

We obtain algorithmic results summarized in the second row of Figure 2.2. In another

result we show that a result of Hassin and Levin [6] on flow-trees for separation with node

capacities can be easily understood via element-connectivity and the existence of Gomory-Hu

tree for it.

Applications: Element-connectivity has found important applications in three areas: net-

work design, packing element-disjoint Steiner trees and forests, and more recently in routing

for node-disjoint paths and related applications. Our algorithmic improvements most di-

rectly affect the second application, namely the problem of packing element-disjoint Steiner

trees and forests. We briefly describe the simpler case of packing element-disjoint Steiner

trees which was the original motivation for the graph reduction step [42]. Here we are given

13

a graph G = (V ,E) and terminal set T and the goal is to find the maximum number of

Steiner trees for T that are pairwise element-disjoint. It is known that in general graphs

one can find Ω(k/ log |T |) trees where k = κ′G(T) and there are examples where this bound

is tight [54]. In planar graphs one can find Ω(k) trees [43, 55]. Algorithms for these first

need to compute k, and then work with the reduced graph. Computing the reduced graph

is the bottleneck and our result thus implies an O(|T |nm)-time algorithm for these packing

problems; the previous bounds is O(k|T |2m2).

There is a vast amount of literature on algorithms for computing edge and node connectiv-

ity in graphs, and related problems on flows and cuts. As the table in Fig 2.2 shows, the edge

connectivity versions have faster algorithms and are much better understood. This is not

surprising since edge-connectivity has additional structure that can be exploited, including

the existence of a Gomory-Hu tree. In contrast, node-connectivity does not admit even a

weaker notion of flow-trees [56]. This chapter can be seen as a first step in exploiting the ba-

sic properties of element-connectivity to obtain faster algorithms. In this context we mention

the the splitting-off operation to preserve edge-connectivity introduced by Lovász [57] and

strengthened by Mader [58]. The algorithmic aspects of splitting-off have been exploited in

several papers on edge-connectivity including some recent ones [48, 59] and we hope similar

ideas may bear fruit for element-connectivity.

2.1 PRELIMINARIES

A capacitated spanning tree (R, c) on V is called a Gomory-Hu tree (cut tree) of f if for

all st ∈ E(R), f(A) = λf (s, t) = c(st), where A is a component of R − st. λf (s, t) for all

s, t ∈ V can be read off from the Gomory-Hu tree as the smallest capacity on the unique

path between s and t. A Gomory-Hu tree always exists when f is non-negative, symmetric,

and submodular (see [60]).

Equivalent digraph: One view of element-connectivity that greatly helps with computa-

tion is to define a flow problem. One can see that κ′G(s, t) is the maximum s-t-flow in G

with unit capacities on the edges and non-terminal nodes (terminal nodes have no capac-

ity constraint). This prompts us to define a equivalent directed graph, which we get from

applying the standard node split operation for a graph when there are node capacities.

Let N = V \T be the set of non-terminals. Let N− = {v−|v ∈ N} and N+ = {v+|v ∈ N}.
The equivalent digraph of G, denoted by G̃ = (Ṽ , Ẽ), where Ṽ = N− ∪N+ ∪ T and the arc

set Ẽ is obtained from G as follows:

1. For every v ∈ N , (v−, v+) ∈ Ẽ.

14

2. For every uv ∈ E where u, v ∈ N , (u+, v−), (v+,u−) ∈ Ẽ.

3. For every uv ∈ E where u ∈ T , v ∈ N , (u, v−), (v+,u) ∈ Ẽ.

4. For every uv ∈ E where u, v ∈ T , (u, v), (v,u) ∈ Ẽ.

All the arcs in G̃ implicitly have unit capacity. Any maximum integral acyclic s-t-flow

fst in G̃ corresponds to a set of maximum element-disjoint s-t-paths in G. Hence we do

not distinguish between maximum flows in G̃ and maximum element-disjoint paths in G. A

flow in G̃ contains a node v (edge e) in G to mean the corresponding element-disjoint path

contains node v (edge e). It is easy to see the following lemma holds.

Lemma 2.1. λG̃(s, t) = κ′G(s, t) for all s, t ∈ T .

2.2 ELEMENT-CONNECTIVITY AND CONNECTIONS TO SUBMODULARITY

It is natural to work with cut-functions that capture element-connectivity. We define a

cut function cG : 2T → R+ over the terminals as follows: for U ⊆ T , cG(U) is the minimum

number of elements whose removal disconnects U from T \U in G. To formally define cG(U)

we consider node tri-partitions (A,Z,B) where U ⊆ A and (T \ U) ⊆ B; among all such

tri-partitions the one with minimum |Z|+ |E(A,B)| defines cG(U). Z ∪E(A,B) is called a

cut-set.

Theorem 2.3 (Menger’s theorem for element-connectivity). For a graph G with terminal

nodes T , for all s, t ∈ T , κ′G(s, t) = min{cG(U) : U ⊆ T , |U ∩ {s, t}| = 1}.

Proof.

min
U⊆T ,|U∩{s,t}|=1

cG(U) = min
U⊆T ,|U∩{s,t}|=1

(
min

(X,Z,Y),U⊆X,T\U⊆Y ,Z⊆V \T
|Z|+ |E(X,Y)|

)
(2.1)

= min
(X,Z,Y),|{s,t}∩X|=1,Z⊆V \T

|Z|+ |E(X,Y)| (2.2)

= κ′G(s, t) (2.3)

All (X,Z,Y) are tri-partitions of V . The last line comes from [61].

If T is a independent set in the previous theorem, then the cut-set can be taken to contain

no edges.

For our purposes a crucial observation is that cG is a non-negative symmetric submodular

function. First, we state a lemma.

15

Lemma 2.2. Let f : 2V → R be a submodular function and P : 2T → 22V is a function with

the property that if X ∈ P (A) and Y ∈ P (B), then X∪Y ∈ P (A∪B) and X∩Y ∈ P (A∩B)

then fP : 2T → R defined as

fP (X) = min
Y ∈P (X)

f(Y) (2.4)

is submodular.

Proof. Let X∗ = arg minY ∈P (X) f(Y), note since X∗ ∈ P (X) and Y ∗ ∈ P (Y), we have

X∗ ∪ Y ∗ ∈ P (X ∪ Y) and X∗ ∩ Y ∗ ∈ P (X ∩ Y).

fP (X) + fP (Y) = f(X∗) + f(Y ∗) (2.5)

≥ f(X∗ ∪ Y ∗) + f(X∗ ∩ Y ∗) (2.6)

≥ f((X ∪ Y)∗) + f((X ∩ Y)∗) (2.7)

= fP (X ∪ Y) + fP (X ∩ Y) (2.8)

Theorem 2.4. Let G be a graph with terminal nodes T . cG is a non-negative symmetric

submodular function over T .

Proof. Clearly cG is symmetric and non-negative. For all X ⊆ T , we have cG(X) =

min{|δG̃(Y)||Y ∈ P (X)}, where P (X) = {X ⊆ Y ,T \ X ⊆ V \ Y } and |δG̃()| is a sub-

modular function. Lemma 2.2 shows cG is submodular.

The preceding theorem implies that cG admits a Gomory-Hu tree. Since every symmetric

submodular function have one [60].

2.3 ALGORITHMIC ASPECTS OF ELEMENT-CONNECTIVITY

In this section we describe our algorithmic contributions to element-connectivity. In par-

ticular we describe how the running times in the second row of the table in Fig. 2.2 can

be realized. Our main contribution is a faster algorithm for graph reduction. In the entire

section, we are always working with a graph G = (V ,E) with n nodes, m edges and terminal

nodes T .

2.3.1 Computing element-connectivity

Single pair element-connectivity The equivalent directed graph allows us to compute

local element-connectivity by running a single maximum flow on a unit capacity directed

16

graph.

Lemma 2.3. κ′G(s, t) can be computed in O(MF(n,m)) time.

Note that if T = {s, t} then κ′G(s, t) = κG(s, t) and moreover maximum bipartite matching

can be reduced to κG(s, t). Thus, improving the time to compute κ′G(s, t) is not feasible

without corresponding improvements to other classical problems.

All-pair element connectivity To compute κ′G(s, t) for all pairs s, t ∈ T , we can com-

pute the Gomory-Hu tree that we know exists from Theorem 2.4. Unlike the single-pair case

where element-connectivity behaves like node-connectivity, in the all-pair case it is closer to

edge-connectivity, and in particular there are at most |T | − 1 distinct element-connectivity

values. A Gomory-Hu tree (R, c) representing the all-pair element-connectivities can be

built recursively by solving |T | − 1 minimum element cut computations, which correspond

to maximum flow computations in the equivalent directed graph. Hence all-pair element-

connectivity takes |T | − 1 maximum flows. For dense graphs, if we allow randomization,

maximum flow can be solved in Õ(nω) time [49], where ω is the matrix multiplication con-

stant.

There is an alternative approach for sparse graphs using network coding. Cheung et al. de-

scribe a randomized algorithm that computes the edge-connectivity in a directed graph be-

tween every pair of nodes in O(mω) time with high probability [50]. Since κ′G(s, t) = λG̃(s, t)

for all s, t ∈ T , all-pair element-connectivity can also be computed in O(mω) time with high

probability.

Global element connectivity The global element-connectivity κ′G(T) can be easily ob-

tained from the all-pair problem.

Theorem 2.5. κ′G(T) can be computed in O(|T | MF(n,m)) time.

It is a very interesting open problem to improve the running time for computing κ′G(T).

Global edge-connectivity admits a near-linear time algorithm [22, 44], but global node con-

nectivity algorithms are much slower.

2.3.2 Computing a reduced graph

This section highlights the main result of the chapter, an O(|T |nm) time algorithm to find

a reduced graph. For G a graph with terminals T , H is called a reduction of G if it can be

obtained from G by a sequence of reduction operations.

17

The reduction lemma suggests a simple algorithm: pick any edge incident to two nontermi-

nal nodes, check which one of the two operations preserves element-connectivity, reduce and

repeat. For a graph on n nodes and m edges, compute all-pair element-connectivity from

scratch. The naive scheme when combined with the non-obvious O(|T | MF(n,m)) algo-

rithm for all-pair case would take O(|T |m MF(n,m)) time. Cheriyan and Salavatipour [54]

described exactly this algorithm where they in fact computed all-pair connectivity using |T |2

max-flow computations; their focus was not in improving the running time. We obtain the

following

Theorem 2.6. For a graph G with n nodes, m edges and terminals T , a reduced graph of

G can be computed in O(|T |nm) time.

The two high-level ideas to obtain an improved run-time are the following.

1. The algorithm initially computes and then maintains a Gomory-Hu tree (R, c) for the

element-connectivity of T . For each edge st ∈ E(R) it maintains a corresponding

maximum flow between s and t in G̃ as it evolves with reduction operations.

2. Instead of considering reduction operations on an edge by edge basis in an ad-hoc

manner we consider all edges incident to a non-terminal node v and process them as a

batch.

The first idea alone would give us a run-time of O(|T |m2). The second idea gives a further

improvement to O(|T |nm).

Reduction by node elimination: We call an edge pq between two non-terminals a re-

ducible edge. For a given non-terminal v let D(v) be the set of all reducible edges incident

to v. We say v is active if D(v) 6= ∅. An elimination operation on an active node v either

contracts an edge in D(v) or removes all edges in D(v). If the graph is not reduced, there is

always an elimination operation that preserves element-connectivity. Indeed, if D(v) cannot

be removed, then consider the edges in D(v) in an arbitrary but fixed sequence and apply

the reduction operation. At some point there is an edge e such that removing it reduces

the element-connectivity. By reduction lemma, we can contract e. An elimination reduces

the number of active nodes by at least 1. There can only be O(n) eliminations. Moreover,

crucially, we can implement a node elimination operation in the same amount of time as an

edge reduction operation.

Our goal is to decide quickly whether an active node v can be eliminated (that is, D(v)

can be removed) and if not which of the edges in D(v) can be contracted. For this purpose

we define a capacitying of edges of E as follows. First we order the edges in D(v) arbitrarily

18

as e1, e2, . . . , eh where h = |D(v)|. We define a capacity function w : E → {1, 2, . . . ,h + 1}
where w(ei) = i and w(e) = h+ 1 for all e ∈ E \D(v).

Given a set of capacities ρ on the edges, for each pair (s, t) of terminals we define βρ(s, t)

as the maximum capacity a such that the element-connectivity between s and t remains the

same even if we remove all edges with capacity less than a. We call βρ(s, t) as the bottleneck

capacity for (s, t). Suppose we used the capacity function as defined above based on the

numbering for D(v) then v can be eliminated iff βw(s, t) > h for all pairs of terminals (s, t).

In fact we can also obtain information on which of the edges in D(v) can be contracted if v

cannot be eliminated. Even further, we need to check only the terminal pairs that correspond

to edges of a Gomory-Hu tree for the element-connectivity of T . This is captured in the

following theorem which forms the crux of our algorithm.

Theorem 2.7. Let (R, c) be a Gomory-Hu tree for the element-connectivity of terminal

set T in G. Consider an active non-terminal v and the capacity function w and let ` =

maxst∈E(R) βw(s, t). Define G′ as G/e` if ` < |D(v)| + 1 and G − D(v) otherwise. Then

κ′G′(u, v) = κ′G(u, v) for all terminal pairs (u, v).

Proof. Recall that D(v) = {e1, e2, . . . , eh} where h = |D(v)|. Let S = {e1, . . . , e`−1}. Since

βw(s, t) ≥ ` for all st ∈ E(R) it follows that the element-connectivity does not change for any

pair st ∈ E(R) if we delete the edges in S from G. From Lemma 2.6 it follows in fact that the

element-connectivity of all pairs remains the same in G−S as in G. Thus all edges in S are

deletable. If ` = h+ 1 then S = D(v) and G′ = G− S and we have the desired property. If

` ≤ h then there is at least one st ∈ E(R) such that κ′G−S(s, t) = κ′G(s, t) but κ′G−S−e`(s, t) <

κ′G(s, t). From the reduction lemma applied to G − S we see that e` is not deletable, and

hence by the reduction lemma (G − S)/e` preserves all the element-connectivities of the

terminals. This also implies that G/e` preserves all element-connectivities.

Computing βw(s, t) is relatively fast if we already have an existing maximum flow from s

to t. This is captured by the lemma below.

Lemma 2.4. Given a maximum s-t-flow fst in G̃, an active non-terminal v and a capacitying

w, we can find βw(s, t) and a corresponding flow in O(m) time.

Proof. Consider a maximum s-t flow fst in G̃. In a flow decomposition of fst there is at most

one flow path that uses the non-terminal v. We can find such a flow path in O(m) time and

reduce the flow by at most one unit to obtain a new flow f ′st which does not have any flow

through v. Not that f ′st is non-zero only on edges e with w(e) = |D(v)| + 1. If the value

of f ′st is the same as that of fst then βw(s, t) = |D(v)| + 1 and we are done. Otherwise, we

19

claim that βw(s, t) = ` iff the maximum bottleneck capacity for a path from s to t in the

residual graph of f ′st in G̃ is `. Assuming that the claim is true we can find βw(s, t) by a

maximum bottleneck path computation in the residual graph in O(m) time since the edges

are sorted by capacity (the algorithm is quite simple but we refer the reader to [62]).

Now we prove the claim. If there is a path of maximum bottleneck capacity ` in the

residual graph we can augment f ′st by one unit to obtain a maximum flow f ′′st that uses only

edges with capacity ` or greater and hence βw(s, t) ≥ `. Suppose βw(s, t) = `′. Remove the

edges {e1, . . . , e`′−1} from G and their corresponding arcs from G̃. There is a maximum s-t

flow of value κ′G(s, t) in this new graph H. f ′st is a flow of value κ′G(s, t)− 1 in H and hence

there must be an augmenting path in the residual graph of f ′st in H and this augmenting

path has bottleneck capacity at least `′ and is also a valid path in residual graph of f ′st in

G̃. Thus ` ≥ `′. Thus βw(s, t) = ` as desired.

Theorem 2.7 and Lemma 2.4 lead to an algorithm as follows. We initially compute and

then maintain a Gomory-Hu tree (R, c) for CG on the terminals. For each edge st ∈ E(R)

we also maintain a maximum flow fst in the current graph G̃. In each iteration we do an

elimination procedure on an active node using Theorem 2.7. Each iteration either reduces

the number of active nodes by one or contracts an edge. Thus the number of iterations is

O(n). The algorithm in Figure 2.3 gives a formal description. Note that the tree (R, c) does

not change throughout the algorithm but the flows fst for each st ∈ E(R) get updated in

each iteration. We need to clarify how we update these flows, analyze the overall running

time, and argue about the correctness of the algorithm.

Updating the flows: Each elimination changes the graph. The algorithm updates the

maximum flows fst for each st ∈ E(R) to reflect this change. If the new graph is G−D(v),

then no flow need updating since the computation of βw(s, t) already finds a new flow that

avoids all edges in D(v). We address the case when we contract an edge from D(v).

Lemma 2.5. Let G be a graph with m edges with terminals T . Let H = G/e for some

reducible edge e. If fst is a maximum s-t flow in G̃, then we can find f ′st, a maximum

s-t-flow in H̃ in O(m) time.

Proof. Let e = pq. We delete flow paths in fst that use p or q. This removes at most 2

unit of flow (since each non-terminal has unit capacity) and the reduced flow is a valid flow

in H̃. In two augmentations we can find a maximum flow in H̃. Each step can be easily

implemented in O(m) time.

Analysis of running time: The time spent to build the Gomory-Hu tree (R, c) and the

20

Input: undirected graph G, terminals T
(R, c)← Gomory-Hu tree of CG
for st ∈ E(R)

fst ← maximum st-flow in G̃
while there exists an active non-terminal node v:
w ← assign capacities to D(v)
for st ∈ E(R):

compute βw(s, t) in O(m) time using fst
`← min{βw(s, t) | st ∈ E(R)}
if ` > |D(v)|:

G← G−D(v)
else:

G← G/e`
for st ∈ E(R)

update fst
return G

Figure 2.3: Reduce a graph G with terminal nodes T

initial maximum flows for each edge st ∈ E(R) take |T | − 1 maximum flow computations.

Thus the time for this is O(|T | MF(n,m))

As we argued there are O(n) iterations of the while loop. In each iteration we need to

compute βw(st) for each st ∈ E(R). Lemma 2.4 shows that each such computation can

be done in O(m) time using the stored maximum flow; thus the total time is O(|T |m).

Updating the maximum flows also takes O(|T |m) time using Lemma 2.5. Thus the overall

running time for all the iterations of the while loop is O(|T |nm) which dominates the time

to compute the initial Gomory-Hu tree.

Correctness: Theorem 2.7 shows the correctness of the elimination procedure. It remains

to argue that the Gomory-Hu tree (R, c) computed in the preprocessing step remains valid

throughout the algorithm as the graph G changes and gets simplified. A similar idea is used

implicitly by Gabow for preserving local edge-connectivity while applying split-off opera-

tions [63]. The following simple lemma gives a justification.

Lemma 2.6. Let (R, c) be a Gomory-Hu tree for cG with terminal nodes T in G. Let H be

a reduction of G. If κ′G(s, t) = κ′H(s, t) for all st ∈ E(R) then (R, c) is also a Gomory-Hu

tree for cH .

Proof. Since removing and contracting edges can’t increase cut size, we have cG ≥ cH . Fix

any st ∈ E(R). Let A be a component of R− st.

cH(A) ≥ λcH (s, t) = λcG(s, t) = c(st) = cG(A) ≥ cH(A). (2.9)

21

Hence this shows (R, c) is a Gomory-Hu tree for cG, then it is also an Gomory-Hu tree for

cH .

2.4 FLOW TREE FOR SEPARATION

A capacitated spanning tree (T ,w) on V is a flow tree for a symmetric function f : V 2 →
R+ if for every u, v, f(u, v) = w(e), where e is the minimum capacity edge on the unique

path between u and v in T . For a function f : V 2 → R, a function Af : 2V → R is called a

f -cut if

f(s, t) = min
U⊆V ,|U∩{s,t}|=1

Af (U) (2.10)

for all s 6= t ∈ V . If Af has a Gomory-Hu tree, then the same tree is a flow tree for f . Note

that a function f may have a flow tree but not a Gomory-Hu tree.

Flow tree is a tree that is similar to the Gomory-Hu Tree in the sense that it gives us the

minimum cut value between all pair of nodes. However, the flow tree does not necessarily

give us the structure of cut. Although its definition is somewhat weaker than the Gomory-Hu

trees, it does not require strict structure of the cut function.

Hassin and Levin [6] considered a variants of node cut, the separation, and present an

explicit ancestor tree construction algorithm to build a flow tree for this variant. An older

paper by Granot and Hassin also provided an explicit construction for the node capacitated

case [64].

A set of nodes S is a node cut of u and v if removing S increase the number of components.

Given a positive capacity function c : V → N. A set of node is a separation between two

nodes u and v is either {u}, {v} or a node cut of u and v. The capacity of a st-separation

S is
∑

v∈S c(v). The minimum st-separation is the st-separation of minimum capacity. The

capacity of such separation is denoted as κ(s, t).

A common characterization of the separation of a graph G = (V ,E) with capacity function

c is to produce an directed equivalent graph the edges. We give a variant of the standard

formulation of the directed equivalent graph [64].

Let V ′ = V ∪{v+|v ∈ V }∪{v−|v ∈ V }, E = {v−v|v ∈ V }∪{vv+|v ∈ V }∪{v+u−|v,u ∈ V }.
The capacities are c′(vv+) = c′(v−v) = c(v), c′(v+u−) =∞.

Let G′ = (V ′,E ′), then κG(u, v) for all u 6= v ∈ V is the value of the maximum flow from

u to v in G′.

We provide two alternative ways to demonstrates there is a flow tree for separation.

Theorem 2.8. For undirected graph G = (V ,E) with node capacities c. There exist a

symmetric submodular κ-cut function Aκ.

22

Proof. Consider the function Aκ : 2V → R+ defined as Aκ(U) = minU⊆U ′ |δG′(U ′)| for all

U ⊆ V . Aκ is clearly symmetric, and it is submodular by Lemma 2.2. It characterizes all

the minimum uv-cuts for u, v ∈ V in G′. Hence Aκ is a κG-cut.

Element-connectivity can also capture separation.

For a G = (V ,E) and capacity function c : V → N. Let V ′v = {v′1, v′2, . . . , v′c(v)}. V =

{v|v ∈ V }
V ′ = V ∪

⋃
v∈V

V ′v (2.11)

E ′ = {vv|v ∈ V } ∪ {v′u′|vu ∈ E, v′ ∈ V ′v ,u′ ∈ V ′u} (2.12)

Theorem 2.9. Let G = (V ,E) with capacity function c : V → N. If G′ = (V ′,E ′), then for

all s 6= t ∈ V , κ′G′(s, t) = κG(s, t).

Hence, if we build a Gomory-Hu tree for element-connectivity on G′ with terminals V ,

then it directly correspond to a flow tree for separation.

2.5 OPEN PROBLEMS

We described an O(|T |mn) time algorithm for finding the reduced graph of a n vertex m

edge graph with terminal nodes T . The main open question is whether we can find a reduced

graph faster. The fastest algorithm for finding the all-pair local element-connectivity is the

same as the algorithm for finding the global element-connectivity. Is there a faster algorithm

for finding the global element-connectivity? We refer the reader to [65] for further related

open problems.

23

Chapter 3: Hypergraph cuts

Algorithms for min-cuts and min-st-cuts in graphs have been extensively studied. Tradi-

tional algorithms for min-cut were based on computing a sequence of (n − 1) min-st-cuts;

min-st-cuts are most efficiently computed via network flow although one can also compute

them via submodular function minimization. The first algorithm for finding a min-cut in

an undirected graph that avoided the use of flows was due to Nagamochi and Ibaraki [9].

They devised a surprising and influential algorithm based on maximum-adjacency orderings

(MA-ordering) which is an ordering of the nodes based on a simple greedy rule. An MA-

ordering can be computed in O(m) time for uncapacitated graphs and in O(m + n log n)

time for capacitated graphs. It has the following interesting property: if s and t are the last

two nodes in the ordering then {t} is an min-st-cut. This yields a simple O(mn + n2 log n)

time algorithm [66] for computing a min-cut in a capacitated graph and is currently the

asymptotically fastest deterministic algorithm. MA-orderings have other important struc-

tural properties which lead to several algorithmic and structural results — many of these

are outlined in [67]. Karger devised another highly influential technique based on ran-

dom contractions [22] which led to a randomized O(n2 log3 n)-time Monte Carlo algorithm

for computing a min-cut in capacitated graphs [29]. Subsequently, using sampling tech-

niques for cut-sparsification and tree packings, Karger devised a randomized O(m log3 n)

time Monte Carlo algorithm [46]. More recently Kawarabayashi and Thorup [44] devised a

deterministic O(m log12 n) time algorithm for simple uncapacitated graphs. Henzinger, Rao

and Wang [45] improved the deterministic running time in simple uncapacitated graphs to

O(m log2 n log log n) using flow partitioning.

What about connectivity in hypergraphs? A simple and well-known reduction shows that

λH(s, t) can be computed via st network flow in the node capacitated bipartite graph GH

associated with H. Thus, using (n − 1) network flows one can compute λ(H). However,

Queyranne [68] showed that the Nagamochi-Ibaraki ordering approach generalizes to find the

min-cut of an arbitrary symmetric submodular function1. A specialization of the approach

of Queyranne with a careful implementation leads to a deterministic O(np + n2 log n)-time

algorithm for capacitated hypergraphs and an O(np)-time algorithm for uncapacitated hy-

pergraphs. Two other algorithms achieving the same run-time were obtained by Klimmek

and Wagner [69] and Mak and Wong [70]. Both these algorithms are based on the Nagamochi

and Ibaraki ordering approach. Surprisingly, the orderings used by these three algorithms

can be different for the same hypergraph even though they are identical for graphs2! We

1For a submodular function f : 2V → R the min-cut is defined naturally as min∅(S(V f(S).
2This observation does not appear to have been explicitly noted in the literature.

24

will later show that we can exploit their different properties in the algorithms.

Apart from the above mentioned results, very little else is known in the algorithms lit-

erature on min-cut and related problems in hypergraphs despite several applications, con-

nections, and theoretical interest. Recent work has addressed streaming and sketching algo-

rithms when the rank is small [11, 24]. In this chapter the three main questions we address

are the following.

• Are there faster (approximation) algorithms for min-cut computation in hypergraphs?

• How many distinct min-cuts can there be? Can a compact representation called the

hypercactus that is known to exist [18, 19] be computed fast? For graphs it is well-

known that there are at most
(
n
2

)
min-cuts and that there exists a compact O(n)-sized

data structure called the cactus to represent all of them.

• Are there fast algorithm to sparsify a hypergraph to (approximately) preserve cuts?

In graphs such results have found powerful applications in addition to mathematical

elegance.

3.1 OVERVIEW

In this chapter we address the preceding questions and obtain several results that we

outline below.

Sparse certificate and fast algorithm for small min-cuts: A k-certificate of a graph

G = (V ,E) is a subgraph G′ = (V ,E ′) of G that preserves all local connectivities in G up

to k; that is λG′(s, t) ≥ min{k,λG(s, t)} for all s, t ∈ V . Nagamochi and Ibaraki [9] showed,

via MA-ordering, that a k-certificate with O(kn) edges can be found in linear time. In the

hypergraph setting, a k-certificate is a hypergraph preserving local connectivity up to k. A

k-certificate with at most k(n − 1) edges is called a k-sparse certificate, and it exists by

greedy spanning hypergraph packing [11]. However, the sum of degrees in the certificate can

be O(kn2). Indeed, there are examples where any k-sparse certificate cannot avoid the n2

factor. We consider a more general operation where we allow trimming of hyperedges; that

is, a node v ∈ e can be removed from e without e itself being deleted. Trimming has been

used for various connectivity results on hypergraphs. For example, in studying k-partition-

connected hypergraphs, or in extending Edmonds’ arborescence packing theorem to directed

hypergraphs [71] (see [72, Section 7.4.1, Section 9.4] for a exposition of the results using the

trimming terminology).

25

We refer to a subhypergraph obtained through edge deletion and trimming and which

preserves all cuts of value up to k as a k-trimmed certificate. We show that for any hypergraph

H on n nodes there is a k-trimmed certificate H ′ that preserves all the local connectivities

up to k such that the size of H ′ in terms of the sum of degrees is at most 2k(n− 1). In fact

the certificate has the stronger property that all cuts are preserved up to k: formally, for

any A ⊆ V , |δH′(A)| ≥ min{k, |δH(A)|}. Moreover such a certificate can be constructed in

O(p) time. This leads to an O(p+λn2) time for computing the min-cut in an uncapacitated

hypergraph, substantially improving the O(np) time when λ is small and p is large compared

to n. Sparsification is of independent interest and can be used to speed up algorithms for

other cut problems. We show an application to cut-sparsification in capacitated hypergraphs.

(2 + ε) approximation for min-cut: Matula [21], building on the properties of MA-

ordering, showed that a (2 + ε) approximation for the min-cut of an uncapacitated graph

can be computed in deterministic O(m/ε) time. The algorithm generalizes to capacitated

graphs and runs in O(1
ε
(m log n+n log2 n)) time (as mentioned by Karger [22]). Although the

approximation is less interesting in light of the randomized Õ(m) algorithm of Karger [46], it

is a useful building block that allows one to deterministically estimate the value of a min-cut.

For hypergraphs there was no such approximation known. In fact, the survey [65] observed

that a near-linear time randomized O(log n)-approximation follows from tree packing results,

and raised the question of whether Matula’s algorithm can be generalized to hypergraphs3.

In this chapter we answer the question in the affirmative and obtain a (2+ε)-approximation

algorithm for the min-cut of a capacitated hypergraph that runs in near-linear time — more

formally in O(1
ε
(p log n + n log2 n)) time. For a uncapacitated hypergraph, the algorithm

runs in O(p/ε) time. In fact we show that the same algorithm generalizes to a class of

non-negative symmetric submodular functions that satisfy subadditive connectivity.

All min-cuts and hypercactus: We consider the problem of finding all the min-cuts in

a hypergraph. For any capacitated graph G on n nodes, it is well-known, originally from

the work of Dinitz, Karzanov and Lomonosov [12], that there is a compact O(n) sized data

structure, namely a cactus graph, that represents all the min-cuts of G. A cactus is a

connected graph in which each edge is in at most one cycle (can be interpreted as a tree of

cycles). As a byproduct one also obtains the fact that there are at most
(
n
2

)
distinct min-cuts

in a graph; Karger’s contraction algorithm gives a very different proof. After a sequence of

improvements, there exist deterministic algorithms to compute a cactus representation of

the min-cuts of a graph in O(mn + n2 log n) time [17] or in O(nm log(n2/m))-time [15, 16].

For uncapacitated graphs, there is an O(m+λ2n log(n/λ))-time algorithm [15]. There is also

3We use near-linear-time to refer to algorithms that run in time O(p logc n) for some fixed constant c.

26

a Monte Carlo algorithm that runs in Õ(m) time [73] building on the randomized near-linear

time algorithm of Karger [46]. In effect, the time to compute the cactus representation is

the same as the time to compute the min-cut! We note, however, that all the algorithms are

fairly complicated, in particular the deterministic algorithms.

The situation for hypergraphs is not as straight forward. First, how many distinct min-cuts

can there be? Consider the example of a hypergraph H = (V ,E) with n nodes and a single

hyperedge containing all the nodes. Then it is clear that every S ⊆ V with 1 ≤ |S| < |V |
defines a min-cut and hence there are exponentially many. However, all of them correspond

to the same edge-set. A natural question that arises is whether the number of distinct min-

cuts in terms of the edge-sets is small. Indeed, one can show that it is at most
(
n
2

)
. It

is a relatively simple consequence of fundamental decomposition theorems of Cunningham

and Edmonds [74], Fujishige [75], and Cunningham [20] on submodular functions from the

early 1980s. Recently Ghaffari et al. also proved this fact through a random contraction

algorithm [3]. Cheng, building on Cunningham’s work [20], explicitly showed that the min-

cuts of a hypergraph admit a compact hypercactus structure. Later Fleiner and Jordan [18]

showed that such a structure exists for any symmetric submodular function defined over

crossing families. However, these papers were not concerned with algorithmic considerations.

In this chapter we show that the hypercactus representation of the min-cuts of a hyper-

graph, a compact O(n) sized data structure, can be computed in O(np+ n2 log n) time and

O(p) space. This matches the time to compute a single min-cut. The known algorithms for

cactus construction on graphs are quite involved and directly construct the cactus. We take

a different approach. We use the structural theory developed in [19,20] to build the canonical

decomposition of a hypergraph which then allows one to build a hypercactus easily. The

algorithmic step needed for constructing the canonical decomposition is conceptually simpler

and relies on an efficient algorithm for finding a non-trivial min-cut (one in which both sides

have at least two nodes) in a hypergraph H if there is one. The technical contribution is to

show that there is an algorithm for finding a slight weakening of this problem that runs in

O(p+ n log n) time. Interestingly, we establish this via the ordering from the paper of [70].

The algorithm yields a conceptually simple algorithm for graphs as well and serves to high-

light the power of the decomposition theory for graphs and submodular functions [20,74,75].

Approximating strengths and (1 + ε)-cut sparsifiers: Benczúr and Karger, in their

seminal work [23], showed that all cuts of a capacitated graph G = (V ,E) on n nodes can

be approximated to within a (1±ε)-factor by a sparse capacitated graph G′ = (V ,E ′) where

|E ′| = O(n log n/ε2). Moreover, G′ can be computed in near-linear time by a randomized

algorithm. The algorithm has two steps. In the first step, it computes for each edge e a

27

number pe which is proportional to the inverse of the approximate strength of edge e (see

Section 3.6 for a formal definition). The second step is a simple importance sampling scheme

where each edge is independently sampled with probability pe and if it is chosen, the edge

e is assigned a capacity ue/pe where ue is the original capacity/capacity of e ∈ E. It is

shown in [23] that the probabilities pe, e ∈ E can be computed by a deterministic algorithm

in O(m log3 n) time where m = |E| if G is capacitated and in O(m log2 n) time if G is

uncapacitated or has polynomially bounded capacities. More recent work [76] has shown a

general framework for cut sparsification where the sampling probability pe can also be chosen

to be approximate connectivity between the end points of e. In another seminal work,

Batson, Spielman and Srivastava [77] showed that spectral-sparsifiers, which are stronger

than cut-sparsifiers, with O(n/ε2) edges exist, and can be computed in polynomial time.

Lee and Sun recently showed such sparsifiers can be computed in randomized Õ(m) time,

where Õ hide polylog factors [78].

Guha et al. [11] devised a simple method for cut-sparsifier of uncapacitated hypergraphs

in the streaming setting. The approach follows [23]. They showed that there is a sketch of

O(ε−2n polylog n) space where a (1± ε)-cut-sparsifier can be constructed. The running time

is Õ(np). However, their results cannot be generalized to capacitated hypergraphs. Kogan

and Krauthgamer [24] extended Benczúr and Karger’s sampling scheme and analysis to show

the following: for any capacitated hypergraph H = (V ,E) with rank r there is a (1 ± ε)-
approximate cut-sparsifier with O(n(r + log n)/ε2) edges. They show that sampling with

(approximate) strengths will yield the desired sparsifier. Finding the strengths of edges in

hypergraphs can be easily done in polynomial time. In this chapter, we develop a near-linear

time algorithm for computing approximate strengths of edges in a capacitated hypergraph.

For this purpose we rely on the sparsification for uncapacitated hypergraphs just as Benczúr

and Karger relied on the sparsification of Nagamochi and Ibaraki. Fast sparsification leads

to improved algorithms for several cut problems and we outline a few simple and direct

applications in Section 3.6.

3.1.1 Other Related Work

Kogan and Krauthgamer’s [24] sparsification relied on a more careful analysis of the ran-

dom contraction algorithm of Karger when applied to hypergraphs. They showed that if the

rank of the hypergraph is r then the number of α-min-cuts for half-integer α ≥ 1 is at most

O(2αrn2α) which is a substantial improvement over a naive analysis that would give a bound

of O(nrα). The exponential dependence on r is necessary. Asssi et al. later generalized it

to all real α ≥ 1 [79]. Kogan and Krauthgamer’s cut-sparsification results rely on the num-

28

ber of approximate minimum cuts. In particular, given a n-node capacitated hypergraph

H = (V ,E) of rank r they show that there is a capacitated hypergraph H ′ = (V ,E ′) with

O(n
ε2

(r + log n)) edges such that every cut capacity in H is preserved to within a (1 ± ε)

factor in H ′. Aissi et al. [79] considered parametric min-cuts in graphs and hypergraphs of

fixed rank and obtained polynomial bounds on the number of distinct min-cuts.

Hypergraph cuts have also been studied in the context of k-way cuts. We defer the

discussion to chapter 4.

Organization: Section 3.2 sets up requisite notation, and also describes different node

orderings and their properties which underpin most of the results in the chapter. Section 3.3

describes sparsification for uncapacitated hypergraphs. Section 3.5 describes the algorithm

for computing the cactus representation of all the minimum cuts. Section 3.4 describes the

extension of Matula’s algorithm and analysis to obtain a (2+ε)-approximation for the global

minimum cut of hypergraphs and a larger class of symmetric submodular functions. Sec-

tion 3.6 describes our algorithm to compute approximate strengths of edges in a capacitated

hypergraph that yields a near linear-time cut sparsification algorithm.

3.2 PRELIMINARIES

For disjoint A and B, d′H(A,B) =
∑

e∈EH(A,B),e⊆A∪B c(e) where only edges completely

contained in A∪B are considered. As before, if H is clear from the context we drop it from

the notation. size(H) is defined as
∑

e∈E |e| in the uncapacitated case and as
∑

e∈E |e|c(e)
in the capacitated case.

Removing a node v ∈ e from e is called trimming e [72]. H ′ is a trimmed subhypergraph

of H if there is a injection φ : E → E ′ where φ(e) ⊆ e. Namely, H ′ is obtained by deleting

nodes and trimming edges.

Contracting an edge e in a hypergraph H = (V ,E) results in a new hypergraph H ′ =

(V ′,E ′) where all nodes in e are identified into a single new node ve. Any edge e′ ⊆ e is

removed. Any edge e′ that properly intersects with e is adjusted by replacing e′ ∩ e by the

new node ve. We note H ′ by H/e.

Equivalent digraph: min-st-cut in a hypergraph H can be computed via an maximum

st-flow in an associated capacitated digraph (see [80]) ~H = (~V , ~E) that we call the equivalent

digraph. ~H = (~V , ~E) is defined as follows:

1. ~V = V ∪ E+ ∪ E−, where E+ = {e+|e ∈ E} and E− = {e−|e ∈ E}.

29

2. If v ∈ e for v ∈ V and e ∈ E then (v, e−) and (e+, v) are in ~E with infinite capacity.

3. For each e ∈ E, (e−, e+) ∈ ~E has capacity equal to c(e).

Careful reader would note this is basically the same as the equivalent digraph in section 2.2.

For any pair s, t ∈ V (H), there is bijection between the finite capacity st-cuts in ~H and st-

cuts in H. We omit further details of this simple fact. The number of nodes in the equivalent

digraph is O(m), and number of edges is O(p). Suppose we wish to compute an minimum

st-cut in the equivalent digraph where s, t ∈ V . If we use Orlin’s algorithm [81] naively we

obtain a running time of O(mp) for max st-flow. However, the longest simple path in the

equivalent digraph has length at most n. For any blocking flow based algorithm, there are

at most n blocking flow iterations. Using dynamic trees, the running time of max st-flow on

the equivalent digraph using Dinic’s algorithm is O(np log n) [82, 83].

Cactus and hypercactus: A cactus is a graph in which every edge is in at most one

cycle. A hypercactus is a hypergraph obtained by a sequence of hyperedge insertions starting

from a cactus. A hyperedge insertion is defined as follows. A node v in a hypergraph

with degree at least 3 and only incident to edges of rank 2, say vv1, . . . , vvk is called a v-

star. A hyperedge insertion replaces a v-star by deleting v, adding new nodes x1,x2, . . . ,xk,

adding new edges {x1, v1}, {x2, v2}, . . . , {xk, vk} and a new hyperedge {x1,x2, . . . ,xk}. See

Figure 3.1 for examples.

v1v1

v2v2 v3v3

v1v1

v2v2 v3v3

vv

x1x1

x2x2 x3x3

(a) Example of hyperedge insertion op-
eration on node v (b) A hypercactus

Figure 3.1: Examples of hypercactus. Grey regions are hyperedges.

3.2.1 Node orderings

Nagamochi and Ibaraki’s work on node orderings for graphs has been generalized to sym-

metric submodular functions by Queyranne [68] and further extended by Rizzi [84]. We set

up the requisite notation in the abstract context before addressing the case of hypergraphs.

30

An ordered pair of nodes (s, t) is called a pendant pair for a function f if f({t}) = λf (s, t).

A pendant pair for a hypergraph defined naturally as a pendant pair of its cut function. There

are three algorithms for computing a hypergraph min-cut following the Nagamochi-Ibaraki

approach of finding a pendant pair, contracting the pair, and recursing. It was generalized

to symmetric submodular functions by Queyranne [68], and later generalized even further

by Rizzi [84], which we describe below.

Monotone and consistent maps: A function g defined over pairs of disjoint subsets of

V is called order inducing if it has the following properties.

• Symmetric: g(A,B) = g(B,A) for all disjoint sets A,B ⊆ V .

• Monotone: g(A,B) ≤ g(A′,B) if A ⊆ A′ and A′ and B are disjoint subsets of V .

• Consistent: g(A,B∪C) ≥ g(B,A∪C) if A,B and C are disjoint and g(A,C) ≥ g(B,C).

The reason for calling such functions order inducing will be clear later. A node ordering is

an ordering of the nodes v1, . . . , vn. Vi = {v1, . . . , vi} are the first i nodes in the ordering. If

f(S) = g(S,S) for all S ⊆ V , we say g realizes f . Rizzi considered a max-back ordering of

g. That is, an ordering of the nodes v1, . . . , vn such that

g(Vi−1, vi) ≥ g(Vi−1, vj) (3.1)

for all j ≥ i.

Theorem 3.1 ([84]). Let v1, . . . , vn be a max-back ordering of an order inducing function

g over V and suppose g realizes f . Then f({vn}) = λf (vn−1, vn) = g(Vn−1, vn).

In particular, if g realizes f , then a pendant pair of f can be found by computing the

max-back ordering of g. Brinkmeier strengthened the preceding theorem as follows.

Theorem 3.2 ([85]). Let v1, . . . , vn be a max-back ordering of an order inducing function

g over V and suppose g realizes f . Then λf (vi−1, vi) ≥ g(Vi−1, vi).

It’s easy to prove the following theorem via induction.

Theorem 3.3. Let g1, . . . , gk be a collection of order inducing functions each of which realizes

f , then any convex combination of g1, . . . , gk is an order inducing function that realizes f .

Connectivity function of a submodular function: Let f be a symmetric submodular

function. The connectivity function df of f is defined on all pairs of disjoint subsets of V as

31

follows: df (A,B) = 1
2
(f(A) + f(B) − f(A ∪ B)). It can be easily seen that df realizes f .

In particular, we define a Queyranne ordering of a symmetric submodular function f as a

max-back ordering with respect to df .

Lemma 3.1. Let c be the cut function of a hypergraph, then dc(A,B) = 1
2
(d(A,B)+d′(A,B))

for all disjoint A,B ⊆ V .

Proof. We just have to consider the case where c is the cut function of a hypergraph with a

single edge e. By definition dc(A,B) = 1
2
(c(A) + c(B)− c(A ∪B)).

If e neither crosses A nor B, then we have dc(A,B) = 0 and d(A,B) = d′(A,B) = 0.

It’s clear dc(A,B) = 1
2
(d(A,B) + d′(A,B)). Hence, without loss of generality, we assume

e crosses A. We have c(A) = 1. If e does not cross B, and e has an element not in B,

so e ∩ B = ∅. This shows dc(A,B) = 0 and c(B) = 1. We have e must cross A ∪ B,

because e contains an element not in A, and e ∩ B = ∅. Therefore c(A ∪ B) = 1. Hence

dc(A,B) = 1
2
(c(A) + c(B)− c(A ∪B)) = 0 = 1

2
(d(A,B) + d′(A,B)).

In the remaining case e must cross both A and B, therefore c(A) = c(B) = 1 and

d(A,B) = 1. If e ⊆ A ∪ B, then d′(A,B) = 1 and c(A ∪ B) = 0, we obtain dc(A,B) = 1 =
1
2
(d(A,B)+d′(A,B)). On the other hand, if e 6⊆ A∪B, then d′(A,B) = 0 and c(A∪B) = 1,

we also obtain dc(A,B) = 1
2
(1+1−1) = 1

2
(d(A,B)+d′(A,B)) = 1/2, the desired result.

One can observe that if f is non-negative, then df is also non-negative. By submodularity,

for any disjoint A,B ⊆ V , df (A,B) = 1
2
(f(A) + f(B)− f(A∪B)) ≥ 1

2
(f(A) + f(B)− f(A∪

B)− f(A ∩B)) ≥ 0.

Node orderings for hypergraphs We work with several node orderings defined for hy-

pergraphs. Given a hypergraph H = (V ,E) and an ordering of the nodes v1, . . . , vn, several

other orderings and quantities are induced by such an ordering. The head of an edge h(e),

defined as vmin{j|vj∈e}, is the first node of e in the ordering. An ordering of the edges e1, . . . , em

is called head ordering, if min{j|vj ∈ ei} ≤ min{j|vj ∈ ei+1}. An edge e is a backward edge

of v if v ∈ e and h(e) 6= v. The head of a backward edge incident to v comes before v in the

node order.

Definition 3.1. An ordering of nodes v1, . . . , vn is called an α-ordering for α ∈ [0, 1] if for

all 1 ≤ i < j ≤ n, αd(Vi−1, vi) + (1 − α)d′(Vi−1, vi) ≥ αd(Vi−1, vj) + (1 − α)d′(Vi−1, vj). An

ordering is called

1. a maximum adjacency ordering or MA-ordering if it is a 1-ordering.

2. a tight ordering if it is a 0-ordering.

32

3. a Queyranne ordering if it is a 1
2
-ordering.

In graphs the three orderings coincide if the starting node is the same and ties are broken

in the same way. However, they can be different in hypergraphs. As an example, consider

a hypergraph with nodes a,x, y, z and four edges with capacities as follows: c({a,x}) =

4, c({a, y}) = 3, c({a,x, z}) = 4 and c({a, y, z}) = 8. Capacities can be avoided by creating

multiple copies of an edge. Consider orderings starting with a. It can be verified that the

second node has to be x, y and z for tight, Queyranne, and MA-ordering respectively which

shows that they have to be distinct.

Klimmek and Wagner used the MA-ordering [69]. Mak and Wong used the tight ordering

[70]. Queyranne defined an ordering for symmetric submodular functions [68] which when

specialized to cut functions of hypergraphs is the one we define, see Lemma 3.1. All three

orderings can be computed in O(p+ n log n) time for capacitated hypergraphs, and in O(p)

time for uncapacitated hypergraphs.

In Sections 3.3, 3.4 and 3.5, we use MA-ordering, tight ordering and Queyranne ordering,

respectively. We state a lemma that summarizes the crucial property that all α-orderings

share. These three different ordering can be used to find the min-cut because of a more

general phenomenon; every α-ordering is an order inducing functions that realizes the hy-

pergraph cut function.

Lemma 3.2. d and d′ are order inducing functions that realize the cut function of a hyper-

graph.

Proof. The proof is routine. We just have to show d and d′ are order inducing for hypergraph

with only one edge. So we consider the hypergraph with a single edge e. It’s clear that d is

symmetric. d(A,B) = 1 implies the edge crosses both A and B, then certainly e also crosses

A ⊆ A′, therefore d is monotone. Similarly we can show d′ is monotone.

To prove d is consistent, we have to prove that d(A,B ∪C) ≥ d(B,A ∪C) for all disjoint

sets A,B,C such that d(A,C) ≥ d(B,C). If d(B,A ∪ C) = 0 then we are done because d

is non-negative. Hence we can assume d(B,A ∪ C) = 1. In other words, the edge has at

least 1 node in B, and at least one node in A ∪ C. This shows d(A,B ∩ C) = 1 if A ∩ e is

non-empty, and we are done. Assume A ∩ e is empty, then this shows e ∩ C is non-empty,

hence 1 = d(B,C) ≤ d(A,C) = 0, a contradiction.

Similarly, we can prove d′ is consistent. Again, we can assume d′(B,A ∪ C) = 1. So we

know e ⊆ A∪B ∪C, and e∩B, e∩ (A∪C) are non-empty. Note if A∩ e is non-empty, then

d′(A,B∩C) = 1, and we are done. Assume A∩e is empty, then this shows e∩C is non-empty.

Because e ∩A = ∅ and e ⊆ A ∪B ∪ C, hence e ⊆ B ∪ C and 1 = d′(B,C) ≤ d(A,C) = 0, a

contradiction.

33

Therefore, we obtain the following lemma for all α-orderings of the hypergraph as a direct

corollary of Theorem 3.2.

Lemma 3.3. Let v1, . . . , vn be a α-ordering of a hypergraph, then {vn} is a min vn−1-vn-cut.

3.3 K-TRIMMED CERTIFICATE AND FASTER MIN-CUT ALGORITHM FOR
SMALL λ

This section shows that a well-known sparsification result for graphs can be generalized to

hypergraphs. The hypergraphs in this section are uncapacitated although multiple parallel

edges are allowed.

Given an uncapacitated hypergraph H and a non-negative integer k, the goal of sparsifica-

tion is to find a sparse trimmed subhypergraph H ′ of H such that |δH′(A)| ≥ min(k, |δH(A)|)
for all A ⊆ V . Namely, it preserves all cuts up to value k. Such trimmed subhypergraphs

are called k-certificates. A non-trimmed subhypergraph that is a k-certificate with at most

k(n− 1) edges is called a k-sparse certificate. It is known that there exists a k-sparse certifi-

cate for each hypergraph [11]. The fact that such a certificate exists is not hard to prove. One

can generalize the forest decomposition technique for graphs [9] in a straight-forward way.

However, the size of the resulting certificate could be large. Indeed, there might not exist any

k-sparse certificate with size O(kn). Consider the following example. Let H = (V ,E) be a

hypergraph on n nodes and n/2−1 edges (assume n is even) where E = {e1, . . . , en/2−1} and

ei = {vi, vn/2, . . . , vn} for 1 ≤ i < n/2. Any connected subhypergraph of H has to contain

all the edges and thus, even for k = 1, the sum of degrees is Ω(n2).

However, we prove a stronger result if trimming is allowed. H ′ is a k-certificate of H and

size(H ′) ≤ 2k(n − 1), then it is called a k-trimmed certificate. One can see a k-trimmed

certificate has at most k(n−1) edges. Hence k-trimmed certificates and k-sparse certificates

coincide in graphs.

Theorem 3.4. Let H = (V ,E) be a hypergraph on n nodes and m edges with size(H) = p.

There is an algorithm that given H creates a data structure in O(p) time such that the

following holds: for any given non-negative integer k, the data structure returns a k-trimmed

certificate H ′ of H in O(size(H ′)) time.

The above theorem is tight for graphs. The proof is an adaptation of that of Frank, Ibaraki

and Nagamochi [61] for the graph version of the sparsification theorem.

Given a hypergraph H = (V ,E) consider an MA-ordering v1, . . . , vn and let e1, . . . , em be

the induced head ordering of the edges. Let Dk(v) to be the first k backward edges of v in

34

the head ordering, or all the backward edges of v if there are fewer than k backward edges.

For each node v and backward edge e of v, we remove v from e if e 6∈ Dk(v). The new

hypergraph from this operation is Hk. Formally, given H and k, Hk = (V ,Ek) is defined

as follows. For an edge e ∈ E let e′ denote the edge {v | v ∈ e ∈ Dk(v) or v = h(e)}; Ek
is defined to be the edge set {e′ | e ∈ E, |e′| ≥ 2}. It is easy to see that if j ≤ k, Hj is a

trimmed subhypergraph of Hk.

We observe that size(Hk) ≤ 2k(n − 1). Each node v that is not v1 is in at most k

backward edges in Hk for a total contribution of at most k(n−1) to the sum of degrees, and

the remaining contribution of at most k(n− 1) comes from head of each edge which can be

charged to the backward edges.

We sketch a data structure that can be created from hypergraph H in O(p) time, such

that for all k, the data structure can retrieve Hk in O(kn) time. First, we compute the

MA-ordering, which takes O(p) time. Using the MA-ordering, we obtain the induced head

ordering of the edges, and the head for each edge, again in O(p) time; we omit the simple

details for this step. For each node v, we can sort all the backedges of v use the head ordering

in O(p) time as follows: we maintain a queue Qv for each node v, and inspect the edges one

by one in the head ordering. When e is inspected, we push e into queue Qv if v ∈ e and

v is not the head of e. This completes the preprocessing phase for the data structure. To

retrieve Hk, we maintain a set of queues that eventually represent the set of edges Ek. For

each node v, find the edges in Dk(v), which is exactly the first k edges (or all edges if there

are fewer than k edges) in Qv. For each edge e ∈ Dk(v), we push v into a queue Qe (if Qe

was not already created, we first create Qe and push the head node of e into Qe). At the

end of the process, each queue Qe contains the nodes of an edge in Ek. The running time is

O(size(Hk)) = O(kn) since we only process Dk(v) for each v.

It remains to show that Hk is a k-certificate of H.

Lemma 3.4. If v1, . . . , vn is an MA-ordering of H, and Hk is a hypergraph obtained from

H via the ordering, then v1, . . . , vn is an MA-ordering of Hk.

Proof. By construction, dHk(Vi, vj) ≤ min(k, dH(Vi, vj)) for all i < j. Consider the first

min{k, dH(Vi, vj)} edges incident to vj in the head ordering; vj is not trimmed from them.

Hence dHk(Vi, vj) ≥ min{k, dH(Vi, vj)}.
For all i ≤ j,

dHk(Vi−1, vi) ≥ min{k, dH(Vi−1, vi)} ≥ min{k, dH(Vi−1, vj)} ≥ dHk(Vi−1, vj). (3.2)

This establishes that v1, . . . , vn is an MA-ordering for Hk.

35

For X ⊆ V we define γ(X) = {e | e ∩X 6= ∅} to be the set of edges that contain at least

one node from X. We need a helper lemma below.

Lemma 3.5. Let H = (V ,E) be a hypergraph and A,B ⊆ V . For u ∈ B and v ∈ V , if

E(u, v) ⊆ δ(A) ∩ γ(B), then

|γ(B) ∩ δ(A)| ≥ |γ(B − u) ∩ δ(A)|+ |E(u, v) \ E(B − u,u, v)|. (3.3)

Proof. Consider an edge e ∈ E(u, v)\E(B−u,u, v). We claim that e 6∈ γ(B−u). Indeed, if

e ∈ γ(B−u), then e is an edge that intersects B−u, {u} and {v}, but then e ∈ E(B−u,u, v).

This shows E(u, v) \ E(B − u,u, v) is disjoint from γ(B − u), and therefore disjoint from

γ(B − u) ∩ δ(A).

We have (i) γ(B − u) ∩ δ(A) ⊆ γ(B) ∩ δ(A) since γ(B − u) ⊆ γ(B), and (ii) E(u, v) \
E(B − u,u, v) ⊆ γ(B) ∩ δ(A) by assumption. Since we have argued that γ(B − u) and

E(u, v) \ E(B − u,u, v) are disjoint, we have the desired inequality

|γ(B) ∩ δ(A)| ≥ |γ(B − u) ∩ δ(A)|+ |E(u, v) \ E(B − u,u, v)|. (3.4)

Lemma 3.6. Let v1, . . . , vn be an MA-ordering for H = (V ,E). Then, for all i < j and

A ⊆ V such that vi ∈ A and vj 6∈ A. |γ(Vi−1) ∩ δ(A)| ≥ d(Vi−1, vj).

Proof. Proof by induction on (i, j) ordered lexicographically. For the base case consider

i = 1 and j > 1. Indeed, in this case both sides of the inequality are 0 and the desired

inequality holds trivially. Assume lemma is true for all (i′, j′) where 1 ≤ i′ < j′, such that

j′ < j or j′ = j and i′ < i. We consider two cases.

Case 1: vi−1 ∈ A. Then because vj 6∈ A, E(vi−1, vj) ⊆ δ(A)∩γ(Vi−1). We apply Lemma 3.5

with B = Vi−1 and u = vi−1 and v = vj to obtain:

|γ(Vi−1) ∩ δ(A)| ≥ |γ(Vi−2) ∩ δ(A)|+ |E(vi−1, vj) \ E(Vi−2, vi−1, vj)| (3.5)

≥ d(Vi−2, vj) + |E(vi−1, vj) \ E(Vi−2, vi−1, vj)| (induction on (i− 1, j), A)

(3.6)

= d(Vi−1, vj). (3.7)

Case 2: vi−1 6∈ A. Note that i ≥ 2. Consider A′ = V \ A. We have vi−1 ∈ A′ and vi 6∈ A′;
therefore, E(vi−1, vi) ⊆ δ(A′) ∩ γ(Vi−1). Applying Lemma 3.5 with B = Vi−1, u = vi−1 and

36

v = vi,

|γ(Vi−1) ∩ δ(A′)| ≥ |γ(Vi−2) ∩ δ(A′)|+ |E(vi−1, vi) \ E(Vi−2, vi−1, vi)| (3.8)

≥ d(Vi−2, vi) + |E(vi−1, vi) \ E(Vi−2, vi−1, vi)| (induction on (i− 1, i),A′)

(3.9)

= d(Vi−1, vi) (3.10)

≥ d(Vi−1, vj) (from MA-ordering). (3.11)

Since δ(A′) = δ(V \ A) = δ(A), |γ(Vi−1) ∩ δ(A′)| = |γ(Vi−1) ∩ δ(A)|.
This finishes the proof.

Using the preceding lemma we finish the proof that Hk is a k-trimmed certificate.

Theorem 3.5. For every A ⊆ V , |δHk(A)| ≥ min(k, |δH(A)|).

Proof. By induction on k. The statement is clearly true for k = 0. |δHi(A)| ≤ |δHk(A)| for

all i ≤ k, because Hi is a trimmed subhypergraph of Hk.

Consider any k > 0. If |δH(A)| = k′ < k, then by induction,

k′ = |δHk′ (A)| ≤ |δHk(A)| ≤ |δH(A)| = k′. (3.12)

Therefore, it suffices to only consider A such that |δH(A)| ≥ k. We will derive a contra-

diction assuming that |δHk(A)| < k. Since |δH(A)| ≥ k, there exists an edge e ∈ E(H) such

that e ∈ δH(A) but was either trimmed to e′ ∈ E(Hk) such that e′ 6∈ δHk(A) or e is removed

completely because it is trimmed to be a singleton {h(e)}. Let vi = h(e) and without loss

of generality we can assume vi ∈ A (otherwise we can consider A). Since e′ does not cross A

in Hk, there is a vj ∈ e∩A with j > i (since vi is the head of e) and vj was trimmed from e

during the sparsification.

Dk(vj) has exactly k edges because backward edge e of vj is not in Dk(vj). For each

f ∈ Dk(vj), the trimmed f ′ ∈ E(Hk) contains both h(f) = v` and vj; we claim that for each

such f , ` ≤ i for otherwise e would be ahead of f in the head order and vj would be trimmed

from f before it is trimmed from e. From this we obtain that EHk(Vj−1, vj) = EHk(Vi, vj)

and hence dHk(Vj−1, vj) = dHk(Vi, vj) = k.

For the remainder of the the proof, we only work with Hk and the quantities d, δ,E, γ are

with respect to this hypergraph and not H. We have

k = d(Vj−1, vj) = d(Vi, vj) = d(Vi−1, vj) + d(vi, vj)− d(Vi−1, vi, vj). (3.13)

37

Hence d(Vi−1, vj) = k − d(vi, vj) + d(Vi−1, vi, vj).

From Lemma 3.4 v1, . . . , vn is an MA-ordering of Hk as well. Applying Lemma 3.6 to Hk,

vi and vj and A, |γ(Vi−1)∩δ(A)| ≥ d(Vi−1, vj). Combining this inequality with the preceding

one,

|γ(Vi−1) ∩ δ(A)| ≥ d(Vi−1, vj) = k − d(vi, vj) + d(Vi−1, vi, vj). (3.14)

We also observe that E(Vi−1, vi, vj) ⊆ E(vi, vj) ⊆ δ(A) because vi ∈ A and vj 6∈ A. We

obtain a contradiction by the following set of inequalities:

k > |δ(A)| (by assumption) (3.15)

≥ |γ(Vi) ∩ δ(A)| (3.16)

= |γ(Vi−1) ∩ δ(A)|+ |E(vi, vj) \ E(Vi−1, vi, vj)| (3.17)

= |γ(Vi−1) ∩ δ(A)|+ d(vi, vj)− d(Vi−1, vi, vj) (3.18)

≥ (k − d(vi, vj) + d(Vi−1, vi, vj)) + d(vi, vj)− d(Vi−1, vi, vj) (from 3.14) (3.19)

= k (3.20)

This finishes the proof.

One can ask whether tight ordering or Queyranne ordering would also lead to k-trimmed

certificates. We observe that they do not work if the only modification is the input ordering,

and Hk is constructed the same way through the head ordering of the edges.

For tight ordering, consider H = ({0, 1, 2, 3},E), where E = {{0, 1, 2}, {0, 2, 3}, {1, 2}}.
0, 1, 2, 3 is a tight ordering. H2 is H with edge {1, 2} removed. λH2(1, 2) = 1 < 2 = λH(1, 2).

For Queyranne ordering, consider H = ({0, . . . , 4},E), where

E = {{0, 1, 2}, {0, 1, 2, 3}, {0, 1, 3, 4}, {1, 3, 4}, {2, 3}}. (3.21)

0, 1, 2, 3, 4 is a Queyranne ordering. H3 is all the edges except the edge {2, 3}. We have

λH3(2, 3) = 2 < 3 = λH(2, 3).

There may be other ways to obtain a k-trimmed certificate using these orderings but we

have not explored this.

Algorithmic applications: Computing connectivity in uncapacitated hypergraphs can be

sped up by first finding a trimmed certificate of the given hypergraph and then running a

standard algorithm on the certificate. This is especially useful when one is interested in

38

small values of connectivity. For min-cut we obtain the following theorem.

Theorem 3.6. The min-cut of a uncapacitated hypergraph H with n nodes and size(H) = p

can be computed in O(p+ λn2) time, where λ is the value of the min-cut of H.

Proof. Using Theorem 3.4, we first compute a data structure in O(p) time that allows us to

retrieve Hk in O(kn) time for any given k. Suppose we knew a number k such that k ≥ λ

and k = O(λ). We can compute the k-trimmed certificate Hk in O(kn) time and compute

λ(Hk) = λ(H) in O(λn2) time using one of the known algorithms since size(Hk) = O(λn).

To find k we apply exponential search for the smallest i such that 2i > λ. Each search

computes hypergraph min-cut on H2i , which takes O(2in2) time. For any k > λ, the value

of the min-cut on the k-trimmed certificate equals to λ. Therefore, the search stops when

the value of min-cut of H2i is strictly smaller than 2i. The total time for the computation is

O(p+
∑1+dlog λe

i=1 2in2) = O(p+ λn2).

A similar idea can be used to compute the edge-connectivity in H between some given

pair s, t. An algorithm for st connectivity that runs in time T (n,m, p) on a hypergraph

with n nodes, m edges and sum of degrees p can be sped up to T (n,m,λ(s, t)n). k-trimmed

certificate can also help in computing α-approximate min-cuts for α > 1.

k-sparse certificate: In some applications trimming is not meaningful and we actually

want a k-sparse certificate instead of a k-trimmed certificate. We have already mentioned

that one can find a k-sparse certificate with k(n− 1) edges via the forest peeling technique

of Nagamochi and Ibaraki; this was done in [11]. Even in this setting the ordering based

algorithm has an advantage over the naive forest peeling in terms of the run time. Suppose

we want a k-sparse certificate. This can be done easily by first computing Hk as before, and

replacing each edge in Hk by its original untrimmed counterpart in H. Note that the total

number of edges is at most k(n− 1) and the running time is O(p).

We need a capacitated version of the k-sparse certificate for Section 3.6. Given a hyper-

graph H = (V ,E) with capacities c : E → R+, we say that a subhypergraph H ′ = (V ,E ′)

with E ′ ⊆ E and capacities c′ : E ′ → R+ is a k-sparse certificate if (i) for all A ⊆ V ,

c′(δH′(A)) ≥ min(c(δH(A)), k), (ii) c′(e) ≤ c(e) for all e ∈ E ′ and (iii)
∑

e∈E′ c
′(e) ≤ k(n−1).

If c is integer valued then we can run the uncapacitated algorithm by creating c(e) copies

of an edge e and obtain the desired k-sparse certificate; the running time will not be strongly

polynomial. The general capacitated case is handled by simulating the uncapacitated algo-

rithm in an implicit fashion as follows. Given a capacitated hypergraph H = (V ,E) consider

an MA-ordering of nodes v1, . . . , vn. Let e1, . . . , em be the induced head ordering of the edges,

just as before. The algorithm is similar for the uncapacitated version. For a node v, assume

39

via renumbering that its backward edges are e1, . . . , e` with capacities c1, . . . , c`, and if i < j

then ei comes before ej in the head order of the edges. For v we define cv : E → R+ as

follows: for 1 ≤ i ≤ `, cv(ei) = max(min(k −
∑

j<i cj, ci), 0) and cv(e) = 0 for any edge

e ∈ E \ {e1, . . . , e`}. We now define c′ : E → R+ as follows: c′(e) = maxv∈V cv(e). Let

E ′ = {e ∈ E | c′(e) > 0}. The capacitated hypergraph H ′ = (V ,E ′) with capacity function

c′ is a k-sparse certificate of H. It is easy to see that the algorithm is implicitly simulating the

uncapacitated algorithm with edges duplicated. With some basic but careful bookkeeping, c′

can be computed in O(p) time. The running time is dominated by finding the MA-ordering,

which is O(p+ n log n) time.

This leads to the following theorem.

Theorem 3.7. There is an algorithm that given uncapacitated hypergraph H and integer k,

finds a k-sparse certificate E ′ of H in O(p) time. If the hypergraph is capacitated, it finds a

k-sparse certificate in O(p+ n log n) time.

3.4 CANONICAL DECOMPOSITION AND HYPERCACTUS REPRESENTATION

In this section, we are interested in finding a canonical decomposition of a capacitated

hypergraph which captures, in a compact way, information on all the min-cuts. Cunning-

ham [20] proved that such decomposition exists for an arbitrary non-negative submodular

function, following previous work by Cunningham and Edmonds [74] and Fujishige [75].

Cheng [19] showed that the canonical decomposition can be used to efficiently, and rel-

atively easily, build a hypercactus representation. Subsequently Fleiner and Jordan [18]

obtained a similar result for arbitrary symmetric submodular functions. One can view the

canonical decomposition as a more fundamental object since it is unique while the cactus

and hypercactus representations are not necessarily unique.

As noted already by Cunningham, the key tool needed to build a canonical decomposition

is an algorithm to find a non-trivial min-cut. Here we show an efficient algorithm for finding

such a min-cut in a hypergraph, and then use it to build a canonical decomposition. We

can then construct a hypercactus from the canonical decomposition as shown in [19]. We

believe that this approach is easier to understand and conceptually simpler than the existing

deterministic cactus construction algorithms for graphs that build the cactus directly.

A cut is trivial if one side of the cut has exactly one node. A split is a non-trivial min-cut.

An st split is a split that separates s and t.

40

3.4.1 An efficient split oracle for hypergraphs

Given a hypergraph H we would like to find a split if one exists. It is not hard to come up

with a polynomial-time algorithm for this task but here we wish to design a faster algorithm.

We accomplish this by considering a weaker guarantee which suffices for our purposes. The

algorithm, given H and the min-cut value λ, outputs either a split in H or a pair of nodes

{s, t} such that there is no st split in H. We call such an algorithm a split oracle. We

describe a near-linear-time split oracle.

We first show how to use a maximum st flow in ~H to help decide whether there is an st

split, and output one if it exists.

Lemma 3.7. Given a maximum st flow in the equivalent digraph of H, and the value of

min-cut λ in H, there is an algorithm that in O(p) time either finds a st split, or certifies

that no st split exists in H.

Proof. If the value of the maximum st flow is greater than λ, there is no st split. Otherwise,

there is an st split iff there is a non-trivial min-st-cut in H.

Suppose a digraph G has k minimum u-v-cuts for some node pair (u, v). Given a maximum

u-v flow in G and an integer `, there is an enumeration algorithm [86] that outputs min(`, k)

distinct min-u-v-cuts in O(`m) time where m is the number of edges in G.

We run the enumeration algorithm with ` = 3 on ~H for the pair (s, t). Every min-st-cut

in ~H corresponds to a min-st-cut in H. If the algorithm returns at most two cuts and both

are trivial then there is no st split. Otherwise one of the output cuts is an st split. The

running time is O(p) since the number of edges in ~H is O(p).

One can find a maximum st flow in ~H using standard flow algorithms but that would

not lead to a near-linear time algorithm. In graphs, Arikati and Mehlhorn [87] devised

a linear-time algorithm that computes the maximum flow between the last two nodes of

an MA-ordering. Thus, we have a near-linear-time split oracle for graphs. Recall that

in hypergraphs there are three orderings which all yield a pendant pair. We generalized

Arikati and Mehlhorn’s algorithm to a linear-time algorithm that tries to find a maximum

flow between the last two nodes of an MA-ordering of a hypergraph (the flow is in the

equivalent digraph). Even though it appears to correctly compute a maximum flow in all

the experiments we ran, we could not prove its correctness. Instead we found a different

method based on the tight ordering, that we describe below.

Let v1, v2, . . . , vn be a tight ordering for a hypergraph H = (V ,E). We define a tight

graph G = (V ,E ′) with respect to H and the given tight ordering as follows. For each edge

41

e ∈ E, we add an edge e′ to E ′, where e′ consists of the last 2 nodes of e under the tight

ordering. The key observation is the following.

Lemma 3.8. Suppose H = (V ,E) is a hypergraph and v1, . . . , vn is a tight ordering for H,

and G = (V ,E ′) is the corresponding tight graph. Then, for 1 ≤ i < j ≤ n, d′G(Vi, vj) =

d′H(Vi, vj).

Proof. Consider any edge e counted in d′H(Vi, vj). e ⊆ Vi ∪ {vj}, and e contains vj. e′

contains vj, and the other end of e′ is in Vi. Therefore e′ is counted in d′G(Vi, vj). This shows

that d′H(Vi, vj) ≤ d′G(Vi, vj).

To see the other direction, consider an e′ ∈ E corresponding to an edge e ∈ E. If e′ is

counted in d′G(Vi, vj), it must be that vj is the last node in e and the second last node of e

is in Vi. This implies that e ⊆ Vi ∪ {vj}, and therefore counted in d′H(Vi, vj), and completes

the direction d′H(Vi, vj) ≥ d′G(Vi, vj).

The preceding lemma implies that the tight ordering for H is a tight ordering for G. From

Lemma 3.3,

λG(vn−1, vn) = d′G(Vn−1, vn) = d′H(Vn−1, vn) = λH(vn−1, vn) (3.22)

Letting s = vn−1 and t = vn, we see that λG(s, t) = λH(s, t). Moreover, an st flow in

G can be easily lifted to an st flow in ~H. Thus, we can compute an st max flow in G in

linear-time using the algorithm of [87] and this can be converted, in linear time, into an st

max-flow in ~H.

This gives the following theorem.

Theorem 3.8. The split oracle can be implemented in O(p + n log n) time for capacitated

hypergraphs, and in O(p) time for uncapacitated hypergraphs.

3.4.2 Decompositions, Canonical and Prime

We define the notion of decompositions to state the relevant theorem on the existence of

a canonical decomposition. In later subsections we describe the computational aspects.

A hypergraph H is prime if it does not contain any split; in other words all min-cuts of H

are trivial. A capacitated hypergraph is called a solid polygon if it consists of a cycle where

each edge has the same capacity a and a hyperedge containing all nodes with capacity b. If

a = 0, it is called brittle, otherwise it is called semi-brittle. A solid polygon is not prime if it

has at least 4 nodes. For a semi-brittle hypergraph with at least 4 nodes, every split consists

of two edges on the cycle and the hyperedge covering all nodes. For a brittle hypergraph

with at least 4 nodes, any non-trivial cut is a split.

42

Given a hypergraph H = (V ,E) and a set U , a function φ : V → U defines a new

hypergraph through a sequence of contraction operations as follows: for each element u ∈ U ,

contract φ−1(u) into u. The resulting hypergraph is the φ-contraction of H. A hypergraph

obtained from H = (V ,E) by contracting S ⊆ V into a single node is denoted by H/S.

{H1,H2} is a simple refinement of H if H1 and H2 are hypergraphs obtained through a

split (V1,V2) of H and a new marker node x as follows.

1. H1 is H/V2, such that V2 gets contracted to x.

2. H2 is H/V1, such that V1 gets contracted to x.

If {H1,H2} is a simple refinement of H, then min-cut value of H1,H2 and H are all equal.

A set of hypergraphs D = {H1,H2, . . . ,Hk} is called a decomposition of a hypergraph H

if it is obtained from {H} by a sequence of operations each of which consists of replacing one

of the hypergraphs in the set by its simple refinement; here we assume that each operation

uses new marker nodes. A decomposition D is a simple refinement of decomposition D′

if D is obtained through replacing one of the hypergraph in D′ by its simple refinement.

A decomposition D′ is a refinement of D if D′ is obtained through a sequence of simple

refinement operations from D. If the sequence is non-empty, D′ is called a strict refinement.

Two decompositions are equivalent if they are the same up to relabeling of the marker

nodes. A decomposition is minimal with property P if it is not a strict refinement of some

other decomposition with the same property P . A prime decomposition is one in which all

members are prime. A decomposition is standard if every element is either prime or a solid

polygon.

Every element in the decomposition is obtained from a sequence of contractions from H.

Hence we can associate each element Hi in the decomposition with a function φHi : V →
V (Hi), such that Hi is the φHi-contraction of H. Every decomposition D has an associated

decomposition tree obtained by having a node for each hypergraph in the decomposition and

an edge connecting two hypergraphs if they share a marker node.

The important theorem below is due to [20], and stated again in [19] specifically for

hypergraphs.

Theorem 3.9 ([20]). Every hypergraph H has a unique (up to equivalence) minimal standard

decomposition. That is, any two minimal standard decompositions of H differ only in the

labels of the marker nodes.

The unique minimal standard decomposition is called the canonical decomposition. As a

consequence, every standard decomposition is a refinement of the canonical decomposition.

43

We remark that minimality is important here. It captures all the min-cut information in H

as stated below.

Theorem 3.10 ([19, 20]). Let D = {H1, . . . ,Hk} be a canonical decomposition of H.

1. For each min-cut S of H, there is a unique i, such that φHi(S) is a min-cut of Hi.

2. For each min-cut S of Hi, φ
−1
Hi

(S) is a min-cut of H.

Note that each hypergraph in a canonical decomposition is either prime or a solid polygon

and hence it is easy to find all the min-cuts in each of them. We observe that any decompo-

sition D of H can be compactly represented in O(n) space by simply storing the node sets

of the hypergraph in D.

Recall that a set of edges E ′ ⊆ E is called a min cut-set if E ′ = δ(S) for some min-cut

S. As a corollary of the preceding theorem, one can easily prove that there are at most
(
n
2

)
distinct min cut-sets in a hypergraph. This fact is not explicitly stated in [19,20].

Corollary 3.1. A hypergraph with n nodes has at most
(
n
2

)
distinct min cut-sets.

Proof. Let H be a hypergraph on n nodes. If H is prime, then there are at most n min cut-

sets. If H is a solid-polygon, then there are at most
(
n
2

)
min cut-sets. Let D be a canonical

decomposition of H. D is obtained via a simple refinement {H1,H2} of H with size a and b,

followed by further refinement. Then, by induction, there are at most
(
a
2

)
+
(
b
2

)
min cut-sets

in H1 and H2. Here a+ b = n+ 2 and a, b ≤ n− 1. Therefore
(
a
2

)
+
(
b
2

)
≤
(

3
2

)
+
(
n−1

2

)
≤
(
n
2

)
when n ≥ 4.

As we already mentioned, the preceding corollary is also derived via a random contraction

algorithm in [3].

3.4.3 Computing a canonical decomposition

In this section we describe an efficient algorithm for computing the canonical decomposi-

tion of a hypergraph H.

We say that two distinct splits (A,A) and (B,B) cross if A and B cross, otherwise they

do not cross. One can easily show that every decomposition is equivalently characterized

by the set of non-crossing splits induced by the marker nodes. Viewing a decomposition as

a collection of non-crossing splits is convenient since it does not impose an order in which

the splits are processed to arrive at the decomposition — any ordering of processing the

non-crossing splits will generate the same decomposition.

44

Call a split good if it is a split that is not crossed by any other split; otherwise the split

is called bad. A canonical decomposition corresponds to the collection of all good splits.

The canonical decomposition can be obtained through the set of of good splits [74, Theorem

3] via the following simple algorithm. If H is prime or solid polygon return {H} itself.

Otherwise find a good split (A,A) and the simple refinement {H1,H2} of H induced by

the split and return the union of the canonical decompositions of H1 and H2 computed

recursively. Unfortunately, finding a good split directly is computationally intensive.

On the other hand finding a prime decomposition can be done via a split oracle by a simple

recursive algorithm, as we shall see in Section 3.4.4. Note that a prime decomposition is not

necessarily unique. We will build a canonical decomposition through a prime decomposition.

This was hinted in [20], but without details and analysis. Here we formally describe such an

algorithm.

One can go from a prime decomposition to a canonical decomposition by removing some

splits. Removing a split corresponds to gluing two hypergraphs with the same marker node

into another hypergraph resulting in a new decomposition. We formally define the operation

as follows. Suppose D is a decomposition of H with a marker node x contained in H1 and

H2. We define a new contraction of H obtained by gluing H1 and H2. Let φH1 and φH2 be

the contractions of H, respectively. Define function φ′ : V → (V (H1)∪V (H2))−x as follows

φ′(v) =

φH1(v) if φH2(v) = x

φH2(v) if φH1(v) = x
(3.23)

Hx is the contraction of H defined by φ′. The gluing of D through x is the set Dx =

D−{H1,H2}∪{Hx}. The operation reflects removing the split induced by x from the splits

induced by D, therefore it immediately implies the following lemma.

Lemma 3.9. Dx is a decomposition of H. Moreover, Dx can be computed from D and H

in O(p) time.

In order to compute Dx implicitly, we only have to obtain φH1 ,φH2 and compute a single

contraction. Therefore O(p) space is sufficient if we can obtain φH1 and φH2 in O(p) time

and space.

We need the following simple lemma.

Lemma 3.10. Let H be a solid polygon. Any decomposition of H is a standard decomposi-

tion. Thus, if D is a decomposition of H, for any marker node, gluing it results in a standard

decomposition of H.

45

Proof. We first prove that any decomposition of H is a standard decomposition. This is

by induction. If the solid polygon consists of a cycle with positive capacity, then exactly

two edges in the cycle and the edge that contains all nodes crosses a split. One can verify

that contraction of either side of the split results in a solid polygon or a prime hypergraph.

Otherwise, the solid polygon is a single hyperedge covering all nodes. Any contraction of

this hypergraph is a solid polygon.

The second part of the lemma follows from the first and the fact that gluing results in a

decomposition.

The following lemma is easy to see.

Lemma 3.11. Given a hypergraph H there is an algorithm to check if H is a solid polygon

in O(p) time.

Adding a split corresponds to a simple refinement. Therefore a decomposition D′ is a

refinement of D then the set of induced splits of D is a subset of induced splits of D′.
Consider the following algorithm that starts with a prime decomposition D. For each

marker x, inspect if gluing through x results in a standard decomposition; one can easily

check via the preceding lemma whether the gluing results in a solid polygon which is the only

thing to verify. If it is, apply the gluing, if not, move on to the next marker. Every marker

will be inspected at most once, therefore the algorithm stops after O(n) gluing operations

and takes time O(np). The goal is to show the correctness of this simple algorithm.

The algorithm starts with a prime decomposition D which is a standard decomposition.

If it is minimal then it is canonical and no gluing can be done by the algorithm (otherwise

it would violate minimality) and we will output a canonical decomposition as required. If D
is not minimal then there is a canonical decomposition D∗ such that D is a strict refinement

of D∗. Let D∗ = {H1,H2, . . . ,Hk} where each Hi is prime or a solid polygon. Therefore

D = ∪ki=1Di where Di is a refinement of Hi. If Hi is prime than Di = {Hi}. If Hi is a solid

polygon then Di is a standard decomposition of Hi. The goal is to show that irrespective of

the order in which we process the markers in the algorithm, the output will be D∗. Let the

marker set for D∗ be M∗ and that for D be M ⊃ M∗. Suppose the first marker considered

by the algorithm is x. There are two cases.

The first case is when x ∈M −M∗. In this case the marker x belongs to two hypergraphs

G1 and G2 both belonging to some Di where Hi is a solid polygon. The algorithm will glue

G1 and G2 and from Lemma 3.10, this gives a smaller standard decomposition D′i of Hi.

The second case is when the marker x ∈ M∗. Let x belong to two hypergraphs G1 and

G2 where G1 ∈ Di and G2 ∈ Dj where i 6= j. In this case we claim that the algorithm will

46

not glue G1 and G2 since gluing them would not result in a standard decomposition. To

see this, let D′ be obtained through gluing of G1 and G2. The split induced by x is in D∗

but not D′. Because the splits induced by D∗ is not a subset of splits induced by D′, D′

is not a refinement of D∗. However, as we noted earlier, every standard decomposition is a

refinement of D∗. Hence D′ is not a standard decomposition.

From the two cases we see that no marker in M∗ results in a gluing and every marker in

M −M∗ results in a gluing. Thus the algorithm after processing D outputs D∗. This yields

the following theorem.

Theorem 3.11. A canonical decomposition can be computed in O(np) time given a prime

decomposition.

Next we describe an O(np+ n2 log n) time algorithm to compute a prime decomposition.

3.4.4 Computing a prime decomposition

We assume there exists an efficient split oracle. Given a hypergraph H and the value of

the min-cut λ, the split oracle finds a split in H or returns a pair {s, t}, such that there is

no st split in H. In the latter case we would like to recurse on the hypergraph obtained by

contracting {s, t} into a single node. In order to recover the solution, we define how we can

uncontract the contracted nodes.

Definition 3.2. Consider a hypergraph H. Let H ′ = H/{s, t}, where {s, t} is contracted

to node v{s,t}. Let G′ be a φ′-contraction of H ′ such that φ′(v{s,t}) = v{s,t}. We define

uncontracting v{s,t} in G′ with respect to H as a graph G obtained from a φ-contraction of

H, where φ is defined as

φ(v) =

φ′(v) if v 6∈ {s, t}

v otherwise
(3.24)

See Figure 3.2 for a simple recursive algorithm that computes a prime decomposition

based on the split oracle. The following lemma justifies the soundness of recursing on the

contracted hypergraph when there is no st split.

Lemma 3.12. Suppose H is a hypergraph with no st split for some s, t ∈ V (H). Let

H ′ = H/{s, t}, where {s, t} is contracted to node v{s,t}. Let D′ be a prime decomposition

of H ′, and let G′ ∈ D′ such that G′ contains node v{s,t}. And let G be obtained through

uncontracting v{s,t} in G′ with respect to H.

47

Prime(H,λ)
if |V (H)| ≥ 4

x← a new marker node
query the split oracle with H and λ
if oracle returns a split (S,V (H)− S)
{H1,H2} ← Refine(H, (S,V (H)− S),x)
return Prime(H1,λ) ∪Prime(H2,λ)

else the oracle returns {s, t}
D′ ← Prime(H/{s, t},λ), {s, t} contracts to v{s,t}
G′ ← the member of D′ that contains v{s,t}
G← uncontract v{s,t} in G′ with respect to H

if ({s, t},V (G)− {s, t}) is a split in G
{G1,G2} ← refinement of G induced by {s, t}
D ← (D′ − {G′}) ∪ {G1,G2}

else
D ← (D′ − {G′}) ∪G

return D
else

return {H}

Figure 3.2: The algorithm for computing a prime decomposition.

1. Suppose {s, t} defines a split in G and let {G1,G2} be a simple refinement of G based

on this split. Then D = (D′ − {G′}) ∪ {G1,G2} is a prime decomposition of H.

2. If {s, t} does not define a split in G then D = (D′−{G′})∪{G} is a prime decomposition

of H.

Proof. Every split in H ′ is a split in H. Therefore (D′ − {G′}) ∪ {G} is a decomposition of

H. Other than G, all other elements in (D′ − {G′}) ∪ {G} are prime.

If G is not prime, then there is a split. There is no st split in G because H does not

have any st split. Any split in G must have the form (A,V (G) − A) where {s, t} ⊆ A. If

A 6= {s, t}, then there exist some other node v ∈ A, which implies |A−{s, t}∪ {v{s,t}}| ≥ 2,

and (A − {s, t} ∪ {v{s,t}},V (G′) − A) is a split in G′, a contradiction to the fact that G′ is

prime. Hence ({s, t},V (G)−{s, t}) is the unique split in G. Therefore the simple refinement

of G based on this unique split are both prime, and we reach the first case.

If G is prime, then we are done, as we reach the second case.

Theorem 3.12. Prime(H,λ) outputs a prime decomposition in O(n(p+T (n,m, p))) time.

Where T (n,m, p) is the time to query split oracle with a hypergraph of n nodes, m edges and

sum of degree p.

48

Proof. Using induction and Lemma 3.12, the correctness of the algorithm is clear. Prime

is called at most 2n times, and each call takes O(p+ T (n,m, p)) time.

Using the split oracle from Theorem 3.8 we obtain the following corollary.

Corollary 3.2. A prime decomposition of a capacitated hypergraph can be computed in

O(np+ n2 log n) time. For uncapacitated hypergraphs it can be computed O(np) time.

3.4.5 Reducing space usage

The description of computing the prime and canonical decompositions did not focus on

the space usage. A naive implementation can use Ω(np) space if we store each hypergraph

in the decomposition explicitly. Here we briefly describe how one can reduce the space usage

to O(p) by storing a decomposition implicitly via a decomposition tree.

Consider a decompositionD = {H1, . . . ,Hk} ofH = (V ,E). We associate a decomposition

tree T = (A,F) with D where A = {a1, . . . , ak}, one node per hypergraph in D; there is

an edge aiaj ∈ F iff Hi and Hj share a marker node. With each ai we also store V (Hi)

which includes the marker nodes and some nodes from V (H). This is stored in a map

ψ : A → ∪iV (Hi). It is easy to see that the total storage for the tree and storing the node

sets is O(n); a marker node appears in exactly two of the hypergraphs of a decomposition

and a node of H in exactly one of the hypergraphs in the decomposition.

Given the decomposition tree T and ψ and a node ai ∈ A, we can recover the hypergraph

Hi (essentially the edges of Hi since we store the node sets explicitly) associated with a node

ai in O(p) time. For each edge e incident to ai in T , let Ce be the component of T − e that

does not contain ai. V (H) ∩ (∪aj∈Ceψ(aj)) are the set of nodes in H which are contracted

to a single marker node in Hi corresponding to the edge e. We collect all this contraction

information and then apply the contraction to the original hypergraph H to recover the edge

set of Hi. It is easy to see that this can be done in O(p) time.

3.4.6 Hypercactus representation

For a hypergraph H, a hypercactus representation is a hypercactus H∗ and a function

φ : V (H)→ V (H∗) such that for all S ⊆ V (H), S is a min-cut in H if and only if φ(S) is a

min-cut in H∗. This is a generalization of the cactus representation when H is a graph.

Note the similarity of Theorem 3.10 and the definition of the hypercactus representation.

It is natural to ask if there is a hypercactus representation that is essentially a canonical

decomposition. Indeed, given the canonical decomposition of H, Cheng showed that one

49

can construct a “structure hypergraph” that captures all min-cuts [19], which Fleiner and

Jordan later point out is a hypercactus representation [18]. The process to construct such

a hypercactus representation from a canonical decomposition is simple. We describe the

details for the sake of completeness.

Assume without loss of generality that λ(H) = 1. We construct a hypercactus if the

hypergraph is prime or a solid polygon. If H is a solid polygon, then it consists of a cycle

and a hyperedge containing all the nodes. If the cycle has non-zero capacity, let H∗ to be H

with the hyperedge containing all the nodes removed, and assign a capacity of 1
2

to each edge

of the cycle. If the cycle has zero capacity, then let H∗ to be a single hyperedge containing

all nodes, the hyperedge has capacity 1. In both cases H∗ together with the the identity

function on V (H) forms a hypercactus representation for H. If H is prime, let V ′ be the

set of nodes that induce a trivial min-cut, i.e. v ∈ V ′ iff {v} is a min-cut in H. Introduce a

new node vH , and let H∗ = ({vH}∪V ′, {{vH , v′}|v′ ∈ V ′}), with capacity 1 for each edge; in

other words we create a star with center vH and leaves in V ′. Define φ : V (H)→ V (H∗) as

φ(u) =

u u ∈ V ′

vH u 6∈ V ′
(3.25)

Then H∗ and φ form a hypercactus representation.

For the more general case, let D∗ = {H1, . . . ,Hk} be the canonical decomposition of H.

For each i, construct hypercactus representation (H∗i ,φi) of Hi as described earlier. We

observe that that if x is a marker node in Hi, then it is also present in H∗i . If Hi is a

solid polygon this is true because V (Hi) = V (H∗i). If Hi is prime, then every marker node

induces a trivial min-cut in Hi, hence also preserved in H∗i . Construct H∗ from H∗1 , . . . ,H∗k
by identifying marker nodes. This also gives us φ : V (H) → V (H∗) by gluing together

φ1, . . . ,φk naturally. (H∗,φ) is the desired hypercactus representation.

The construction takes O(np) time and O(p) space.

Theorem 3.13. A hypercactus representation of a capacitated hypergraph can be found in

O(n(p + n log n)) time and O(p) space for capacitated hypergraphs, and in O(np) time for

uncapacitated hypergraphs.

Proof. We combine Theorem 3.11 and Corollary 3.2. The space usage can be made O(p)

based on the discussion in Section 3.4.5.

If H is a graph, the hypercactus representation constructed is a cactus representation.

Theorem 3.13 matches the best known algorithm for cactus representation construction of

graphs in both time and space [17], and is conceptually simpler.

50

Via sparsification we obtain a faster algorithm for uncapacitated hypergraphs.

Theorem 3.14. A hypercactus representation of an uncapacitated hypergraph can be found

in O(p+ λn2) time and O(p) space.

Proof. Find the min-cut value λ, and a (λ + 1)-sparsifier H ′ of H in O(p + λn2) time.

Theorem 3.5 shows that every min-cut in H is a min-cut in H ′, and vice versa. Therefore

the hypercactus for H ′ is a hypercactus for H. Apply Theorem 3.13 to H ′.

For graphs Gabow [15] achieves a running time of O(m + λn2) which is faster than the

running time of O(m + λn2) given by the preceding theorem. Gabow’s algorithm is much

more complex and it is an open problem whether one can achieve similar running time even

for hypergraphs with fixed rank.

3.5 NEAR-LINEAR TIME (2 + ε) APPROXIMATION FOR MIN-CUT

Matula gave an elegant use of MA-ordering to obtain a (2+ ε)-approximation for the min-

cut in an uncapacitated undirected graph in O(m/ε) time [21]. Implicit in his paper is an

algorithm that gives a (2+ε)-approximation for capacitated graphs in O(1
ε
(m log n+n log2 n))

time; this was explicitly pointed out by Karger [22]. Here we extend Matula’s idea to

hypergraphs. We describe an algorithm that outputs a (2+ε)-approximation for hypergraph

min-cut in O(1
ε
(p log n + n log2 n)) time for capacitated case, and in O(p/ε) time for the

uncapacitated case. In fact, we show a more general result. For any non-negative symmetric

submodular function whose connectivity function df is subadditive, we can produce a (2+ε)-

approximation of the minimizer using O(n
2 logn
ε

) value oracle calls to the function f . Note

that Queyranne’s algorithm that outputs an exact minimizer requires Ω(n3) oracle calls.

A connectivity function of f , df , is subadditive if df (A,B ∪ C) ≤ df (A,B) + df (A,C)

for all disjoint A,B,C. df is additive if preceding inequality holds with equality. We say

a function is nice, if it is normalized, symmetric, submodular and its connectivity function

is subadditive. It is easy to see that non-negative capacitated sum of nice functions is also

nice.

Theorem 3.15. The cut function of a hypergraph is nice.

Proof. We just have to prove the theorem for hypergraphs with at most 1 edge, then we can

use the fact every hypergraph cut function is sum of hypergraph cut function realized by a

single edge hypergraph.

51

Consider the hypergraph on n nodes V , and a single edge e. Consider arbitrary disjoint

sets of nodes A,B and C, we want to show

dc(A,B ∪ C) ≤ dc(A,B) + dc(A,C). (3.26)

If dc(A,B ∪ C) = 0, then the inequality is clearly true. Hence we can assume d(A,B ∪ C)

is either 1
2

or 1. If dc(A,B) = 1. Since we know dc(A,B) = 1
2
(d(A,B) + d′(A,B)) for all A

and B, we know d(A,B ∪C) = d′(A,B ∪C) = 1. This shows e∩ (B ∪C) is non-empty and

e ⊆ A ∪ B ∪ C. Either e ∩ B or e ∩ C is non-empty. Therefore either d(A,B) or d(A,C)

is 1. Assume d(A,B) = 1. If we also have d(A,C) = 1, then we have dc(A,B ∪ C) =

1 = 1
2
d(A,B) + 1

2
d(A,C) ≤ dc(A,B) + dc(A,B). If otherwise d(A,C) = 0, this implies

e ∩ C is empty, and e ⊆ A ∪ B. Hence d′(A,B) = 1. We have dc(A,B ∪ C) = 1 =
1
2
(d(A,B) + d′(A,B)) = dc(A,B) ≤ dc(A,B) + dc(A,C).

Now, we assume that dc(A,B∪C) = 1
2
. This shows d(A,B∪C) = 1, and either d(A,B) or

d(A,C) is 1. Either way dc(A,B∪C) = 1
2
≤ 1

2
d(A,B)+ 1

2
d(A,C) ≤ dc(A,B)+dc(A,C).

Note the proof above shows the connectivity of graph functions are additive.

Are all nice functions hypergraph cut functions? The answer is no. Yamaguchi showed

there exists a hypergraph cut function h and a graph cut function g such that h − g is a

normalized symmetric submodular function but not a hypergraph cut function [88, Remark

2.]. It’s easy to see h− g has subadditive connectivity since g have additive connectivity.

We now consider nice functions instead of hypergraphs and after the algorithm and analysis

in this more general setting we return to estimate the running time of the algorithm for

hypergraphs. We define σ(f) =
∑

v∈V f(v) and δ(f) = minv∈V f(v). The function f ′

obtained from contracting S into s in f is defined such that f ′(X) = f(X) if s 6∈ X, and

f ′(X) = f(X ∪ S \ {s}) if s ∈ X. One can define inductively a function obtained by

contracting a few disjoint sets. It is not hard to see that nice functions are closed under

contraction.

Recall the Queyranne ordering of the nodes in f is an ordering of the nodes v1, . . . , vn,

such that

df (Vi, vi+1) ≤ df (Vi, vj) (3.27)

for all j ≥ i+ 1, where df (A,B) = 1
2
(f(A) + f(B)− f(A ∪B)).

Let v1, . . . , vn be a Queyranne ordering of the given function f . Given a non-negative

number α, a set of consecutive nodes in the ordering va, va+1, . . . , vb where a ≤ b is called

α-tight if df (Vi, vi+1) ≥ α for all a ≤ i < b. The maximal α-tight sets partition V . We

obtain a new function by contracting each maximal α-tight set into a single node. We call

52

the contracted function an α-contraction. Note that the contraction depends both on α and

the specific Queyranne ordering.

Lemma 3.13. Let f be any normalized symmetric set function on {v1, . . . , vn}. Consider

any ordering of the nodes v1, . . . , vn, then

n∑
i=1

df (Vi−1, vi) =
1

2
σ(f) (3.28)

Proof. The proof follows from the following series of simple equalities.

n∑
i=1

df (Vi−1, vi) =
1

2

n∑
i=1

(f(Vi−1) + f(vi)− f(Vi)) =
1

2

n∑
i=1

(f(Vi−1)− f(Vi)) +
1

2

n∑
i=1

f(vi)

(3.29)

=
1

2
(f(V0)− f(Vn) +

1

2

n∑
i=1

f(vi) =
1

2

n∑
i=1

f(vi) =
1

2
σ(f) (3.30)

One important aspect of α-contraction of a nice function f is that σ(f ′) ≤ 2αn if f ′ is the

function obtained from α-contraction.

Lemma 3.14. Let f ′ be an α-contraction of a given nice function f . Then σ(f ′) ≤ 2αn

where n = | dom(f)|.

Proof. Assume the α-tight partition of V is X1, . . . ,Xh where the ordering of the parts is

induced by the Queyranne ordering. For 1 ≤ i ≤ h, let Ai =
⋃i
j=1Xj. Since each Xi is a

maximal α-tight set, df (Ai,x) < α for all x ∈ Xi+1. We have the following set of inequalities:

σ(f ′) =
h∑
i=1

f(Xi) (3.31)

= 2
h∑
i=1

df (Ai−1,Xi) (Lemma 3.13) (3.32)

≤ 2
h∑
i=1

∑
x∈Xi+1

df (Ai,x) (subadditivity) (3.33)

< 2
h∑
i=1

α|Xi+1| ≤ 2αn. (3.34)

53

The second important property of α-contraction is captured by the following lemma.

Lemma 3.15. Let f be a non-negative symmetric submodular function over V and let

v1, . . . , vn be a Queyranne ordering of the node set V . If vi and vj are in an α-tight set

then λf (vi, vj) ≥ α.

Proof. Assume without loss of generality that i < j. Consider any k such that i ≤ k < j.

We have df (Vk, vk+1) ≥ α because i and j are in the same α-tight set. By Theorem 3.2,

λf (vk, vk+1) ≥ df (Vk, vk+1) ≥ α. By induction and using the fact that for any a, b, c ∈ V ,

λf (a, c) ≥ min(λf (a, b),λf (b, c)), we have λf (vi, vj) ≥ α.

Figure 3.3 describes a simple recursive algorithm for finding an approximate min-cut.

Approximate-Minimizer(f)
if (| dom(f)| ≥ 2)

δ ← δ(f)
if (δ = 0)

return 0
α← 1

2+εδ

Compute Queyranne ordering of f
f ′ ← α-contraction of f
λ′ ← Approximate-Minimizer(f ′)
return min(δ,λ′)

else
return ∞

Figure 3.3: Description of (2+ε)-approximation algorithm. It is easy to remove the recursion.

Theorem 3.16. Approximate-min-cut outputs a (2 + ε)-approximation to an input nice

function f , and can be implemented in O(n
2

ε
log nδ(f)

λ(f)
) oracle calls.

Proof. We first argue about the termination and run-time. From Lemma 3.14, σ(f ′) ≤
2

2+ε
nδ(f). Since σ(f) ≥ nδ(f), we see that each recursive call reduces the σ value of the

function by a factor of 2
2+ε

. This ensures termination.

Let f ′′ be any non-trivial normalized symmetric submodular function (that has at least

two nodes) that arises in the recursion. The minimizer value does not reduce by contraction

and hence λ(f ′′) ≥ λ(f) which in particular implies that δ(f ′′) ≥ λ(f), and hence σ(f ′′) ≥
2| dom(f ′′)|λ(f). After the first recursive call, σ(f ′) ≤ 2

2+ε
nδ(f). Thus the total number

of recursive calls is O(ε−1 log(nδ(f)
λ(f)

)). The work in each call is dominated by the time to

compute a Queyranne ordering which can be done in O(n2) oracle calls [68]. This time gives

the desired upper bound on the run-time of the algorithm.

54

We now argue about the correctness of the algorithm which is by induction on n. It is easy

to see that the algorithm correctly outputs the min-cut value if n = 1 or if δ = 0. Assume

n ≥ 2 and δ(f) > 0. The number of nodes in f ′ is strictly less than n if δ(f) > 0 since

the σ strictly decreases. Since contraction does not reduce the non-trivial minimizer value,

λ(f ′) ≥ λ(f). By induction, λ(f ′) ≤ λ′ ≤ (2 + ε)λ(f ′). If λ(f ′) = λ(f) then the algorithm

outputs a (2+ε)-approximation since δ ≥ λ(f). The more interesting case is if λ(f ′) > λ(f).

This implies that there are two distinct nodes x and y in f such that λ(x, y; f) = λ(f) and x

and y are contracted together in the α-contraction. By Lemma 3.15, λ(x, y; f) ≥ α = 1
2+ε

δ

which implies that δ ≤ (2 + ε)λ(f). Since the algorithm returns min(δ,λ′) we have that the

output is no more than (2 + ε)λ(f).

Since δ(f) can be much larger than λ(f), we can preprocess the function to reduce δ to

at most nλ(f) to obtain a strongly polynomial run time.

Lemma 3.16. Let β = mini>1 df (Vi−1, vi) for a given Queyranne ordering v1, . . . , vn of a

non-negative symmetric submodular function f . Then β ≤ λ(f) ≤ nβ.

Proof. From Lemma 3.15, λf (u, v) ≥ β for all u, v ∈ V because V is a β-tight set. Therefore

λ(f) ≥ β. Let i∗ = arg mini>1 df (Vi−1, vi). Then,

λ(f) ≤ f(Vi∗−1) = df (Vi∗−1,V \ Vi∗−1) ≤
n∑

j=i∗

df (Vi∗−1, vj) ≤ (n+ 1− i∗)β ≤ nβ. (3.35)

Let β be the value in Lemma 3.16, then a 2nβ-contraction of f yields a nice function

f ′ where σ(f ′) = O(n2β). This also implies that δ(f ′) = O(n2β). Applying the (2 + ε)

approximation algorithm to f ′ gives us the following corollary.

Corollary 3.3. A (2+ε) approximation for a nice function can be computed in O(ε−1n2 log n)

oracle calls.

We now specialize the algorithm to hypergraphs. The dominating term in each iteration is

the time to compute a Queyranne ordering, which takes O(p+ n log n) time for capacitated

hypergraphs, and O(p) time for uncapacitated hypergraphs. The number of recursive calls

is O(1
ε

log n).

Corollary 3.4. A (2+ε) approximation for hypergraph min-cut can be computed in O(ε−1(p+

n log n) log n) time for capacitated hypergraphs, and in O(ε−1p) time for uncapacitated hy-

pergraphs.

55

The analysis assumed that f is a normalized symmetric submodular function. Suppose f

is not normalized but has subadditive connectivity. We find a (2+ ε) approximate minimizer

of the normalization f ′ (the function f ′ defined by f ′(S) = f(S)− f(∅)) instead. It can be

seen that the output is also a (2 + ε) approximate minimizer of f .

3.6 STRENGTH ESTIMATION AND CUT SPARSIFIERS

The goal of this section describe a fast algorithm for computing approximate strengths of

edges of a capacitated hypergraph. These estimates can be used to do importance sampling

and obtain a cut sparsifier as shown in [24].

The strength of an edge e, denoted by γH(e), is defined as maxe⊆U⊆V λ(H[U]); in other

words the largest connectivity of a node induced subhypergraph that contains e. We also

define the cost ζH(e) of e as the inverse of the strength; that is ζH(e) = 1/γH(e). We drop

the subscript H if there is no confusion regarding the hypergraph. The preceding definitions

generalize easily to capacitated hypergraphs. The strength of an edge e is the maximum

min-cut value over all node induced subhypergraphs that contain e.

The main technical result of this section is the following.

Theorem 3.17. Let H = (V ,E) be a capacitated hypergraph on n nodes. There is an

efficient algorithm that computes for each edge e an approximate strength γ′(e) such that the

following properties are satisfied:

1. lower bound property: γ′(e) ≤ γH(e) and

2. α-cost property:
∑

e∈E
1

γ′(e)
≤ α · (n− 1) where α = O(r).

For uncapacitated hypergraphs the running time of the algorithm is O(p log2 n) and for ca-

pacitated hypergraphs the running time is O(p log p log2 n).

We refer to estimates that satisfy the properties of the preceding theorem as α-approximate

strengths. One idea that comes to mind in finding O(r)-approximate strengths is to con-

vert the given hypergraph into a graph and compute approximate strengths in the graph.

For example, we could replace each hyperedge with a clique, or a star spanning the nodes

contained in the edge. The minimum strength of the replaced edges might give us a O(α)-

approximation. Unfortunately, this will not work even when then rank is 3. Consider the

following hypergraph H with nodes {v1, . . . , vn}. There is an edge e = {v1, v2}, and edge

{v1, v2, vi} for all 3 ≤ i ≤ n. The strength of e in H is 1. Let G be a graph where each

{v1, v2, vi} in H is replaced with a star centered at v1 and spans {v1, v2, vi}. The strength of

e in G is n− 1. This bound also holds if each hyperedge {v1, v2, vi} is replaced by a clique.

56

The proof of the preceding theorem closely follows the corresponding theorem for graphs

from [23]. A key technical tool for graphs is the deterministic sparsification algorithm for

edge-connectivity due to Nagamochi and Ibaraki [9]. Here we rely on the generalization to

hypergraphs from Section 3.3. Before we describe the proof we discuss some applications in

the next subsection.

3.6.1 Applications

A capacitated hypergraph H ′ = (V ,E ′) is a (1± ε)-cut-sparsifier of a capacitated hyper-

graph H = (V ,E), if for every S ⊆ V , the cut value of S in H ′ is within (1 ± ε) factor of

the cut value of S in H. Below we state formally the sampling theorem from [24].

Theorem 3.18 ([24]). Let H be a rank r capacitated hypergraph where edge e has capacity

c(e). Let Hε be a hypergraph obtained by independently sampling each edge e in H with

probability pe = min
(

3((d+2) lnn+r)
γH(e)ε2

, 1
)

and capacity c(e)/pe if sampled. With probability at

least 1−O(n−d), the hypergraph Hε has O(n(r+log n)/ε2) edges and is a (1±ε)-cut-sparsifier

of H.

The expected capacity of each edge in Hε is the capacity of the edge in H. It is not difficult

to prove that c-approximate strength also suffices to get a (1 ± ε)-cut-sparsifier. That is,

if we replace γ with α-approximate strength γ′, the sampling algorithm will still output a

(1±ε)-cut-sparsifier of H. Indeed, the lower bound property shows each edge will be sampled

with a higher probability, therefore the probability of obtaining a (1±ε)-sparsifier increases.

However, the number of edges in the sparsifier increases. The α-cost property shows the

hypergraph Hε will have O(αn(r + log n)/ε2) edges.

From Theorem 3.17, we can find anO(r)-approximate strength function γ′ inO(p log2 n log p)

time.

Corollary 3.5. A (1± ε)-cut-sparsifier of H with O(nr(r+ log n)/ε2) edges can be found in

O(p log2 n log p) time with high probability.

The number of edges in the (1± ε)-cut-sparsifier is worse than Theorem 3.18 by a factor

of r. It is an open problem whether the extra factor of r can be removed while maintaining

the near-linear running time.

As is the case for graphs, cut sparsification allows for faster approximation algorithms for

cut problems. We mention two below.

57

min-cut: The best running time known currently to compute a (global) min-cut in a

hypergraph is O(pn) [69, 70]. We already described how to obtain a (2 + ε)-approximation

in Õ(p/ε) time [7]. Via Corollary 3.5 we can first sparsify the hypergraph and then apply

the O(pn) time algorithm to the sparsified graph. This gives a randomized algorithm that

outputs a (1 + ε)-approximate min-cut in a rank r hypergraph in O(n2r2(r + log n)/ε2 +

p log2 n log p) time and works with high probability. For small r the running time is Õ(p +

n2/ε2) for a (1 + ε)-approximation.

min-st-cut: The standard technique to compute a min-st-cut in a hypergraph is com-

puting a st maximum flow in an associated capacitated digraph with O(n + m) nodes and

O(p) edges [80]. A (1 − ε) approximation algorithm of st maximum flow in such graph

can be found in Õ(p
√
n+m) time [89]. Via sparsification Corollary 3.5, we can obtain a

randomized algorithm to find a (1 + ε)-approximate min-st-cut in a rank r hypergraph in

Õ(n3/2r2(r + log n)3/2/ε3 + p) time. For small r the running time is Õ(p + n3/2/ε3) for a

(1 + ε)-approximation.

3.6.2 Properties of edge strengths

A k-strong component of H is a inclusion-wise maximal set of nodes U ⊆ V such that

H[U] is k-edge-connected. An edge e is k-strong if γ(e) ≥ k, otherwise e is k-weak. κ(H) is

the number of components of a hypergraph H.

Proposition 3.1. Deleting an edge does not increase the strength of any remaining edge.

Contracting an edge does not decrease the strength of any remaining edge.

Lemma 3.17. Let H = (V ,E) be a hypergraph. If an edge e ∈ E crosses a cut of value k,

then γH(e) ≤ k.

Proof. Suppose S is a cut such that |δH(S)| ≤ k and e ∈ δH(S). Consider any U ⊆ V that

contains e as a subset and let H ′ = H[U]. It is easy to see that |δH′(S ∩ U)| ≤ k and hence

λ(H ′) ≤ k. Therefore, γ(e) = maxe⊆U⊆V λ(H[U]) ≤ k.

Lemma 3.18 (Extends Lemma 4.5,4.6 [23]). Let e, e′ be distinct edges in a hypergraph

H = (V ,E).

1. If γH(e) ≥ k and e′ is a k-weak edge then γH(e) = γH′(e) where H ′ = H \ e′.

2. Suppose γH(e) < k (that is e is a k-weak edge) and e′ is a k-strong edge. Let H ′ = H/e′

obtained by contracting e′. If f is the corresponding edge of e in H ′ then γH(e) =

γH′(f).

58

In short, contracting a k-strong edge does not increase the strength of a k-weak edge and

deleting a k-weak edge does not decrease the strength of a k-strong edge.

Proof. We prove the two claims separately.

Deleting a k-weak edge: Since e is k-strong inH there is U ⊆ V such that λ(H[U]) ≥ k

and e ⊆ U . If e′ ⊆ U , e′ would be a k-strong edge. Since e′ is k-weak, e′ does not belong to

H[U]. Thus H ′[U] = H[U] which implies that γH′(e) ≥ k.

Contracting a k-strong edge: Let H ′ = H/e′ where e′ is a k-strong edge in H.

Let ve′ be the node in H ′ obtained by contracting e′. Let U ′ ⊆ V (H ′) be the set that

certifies the strength of f , that is γH′(f) = λ(H ′[U ′]) and f ⊆ U ′. If ve′ 6∈ U ′ then it is

easy to see that U ′ ⊆ V (H) and H[U] = H ′[U ′] which would imply that γH′(f) = γH(e).

Thus, we can assume that ve′ ∈ U ′. Let U be the set of nodes in V (H) obtained by

uncontracting ve′ . We claim that λ(H[U]) ≥ λ(H ′[U ′]). If this is the case we would have

γH(e) ≥ λ(H[U]) ≥ λ(H ′[U ′]) = γH′(f). We now prove the claim. Let W be the set

that certifies the strength of e′, namely γH(e′) = λ(H[W]). Consider any cut S ⊆ U ∪W in

H[U ∪W]. If S crosses W or strictly contained in W , then S has cut value at least λ(H[W]).

Otherwise, S ⊆ U \W or W ⊆ S. By symmetry, we only consider S ⊆ U \W . S 6= U

because e′ ⊆ U ∩W . S is also a cut in H ′[U ′], and |δH[U](S)| = |δH′[U ′](S)|. This shows that

λ(H[U ∪W]) ≥ min(λ(H ′[U ′]),λ(H[W])) (3.36)

Because λ(H[W]) > λ(H[U]), and λ(H[U]) ≥ λ(H[U ∪ W]), we arrive at λ(H[U]) ≥
λ(H ′[U ′]).

Theorem 3.19 (Extends Lemma 4.10 [23]). Consider a connected uncapacitated hypergraph

H = (V ,E). A capacitated hypergraph H ′ = (V ,E) with capacity ζH(e) on each edge e has

minimum cut value 1.

Proof. Consider a cut S of value k in H; that is |δH(S)| = k. For each edge e ∈ δ(S),

γH(e) ≤ k by Lemma 3.17. Therefore e has capacity at least 1/k in H ′. It follows the cut

value of S in H ′ is at least k · 1/k ≥ 1. Thus, the min-cut of H ′ is at least 1.

Let S be a min-cut in H whose value is k∗. It is easy to see that for each e ∈ δH(S),

γH(e) = k∗. Thus the value of the cut S in H ′ is exactly k∗ · 1/k∗ = 1.

Lemma 3.19 (Extends Lemma 4.11 [23]). For a uncapacitated hypergraph H = (V ,E) with

at least 1 node, ∑
e∈E

ζ(e) ≤ n− κ(H) (3.37)

59

Proof. Let t = n− κ(H). We prove the theorem by induction on t.

For the base case, if t = 0, then H has no edges and therefore the sum is 0.

Otherwise, let t > 0. Let U be a connected component of H with at least 2 nodes. There

exists a cut X of cost 1 in H[U] by Theorem 3.19.

LetH ′ = H−δ(S). H ′ has at least one more connected component thanH. By Proposition

3.1, for each e ∈ E(H ′) γH(e) ≥ γH′(e); hence ζH′(e) ≥ ζH(e). By the inductive hypothesis,∑
e∈E(H′) ζH′(e) ≤ (n − κ(H ′)) ≤ t − 1. The edges in H are exactly δ(X) ∪ E(H ′). By the

same argument as in the preceding lemma,
∑

e∈δ(X) ζH(e) = 1. Therefore,

∑
e∈E(H)

ζH(e) =
∑
e∈δ(X)

ζH(e) +
∑

e∈E(H′)

ζH(e) (3.38)

= 1 +
∑

e∈E(H′)

ζH(e) (3.39)

≤ 1 +
∑

e∈E(H′)

ζH′(e) (3.40)

≤ 1 + (t− 1) = t. (3.41)

Corollary 3.6. The number of k-weak edges in an uncapacitated hypergraph H on n nodes

is at most k(n− κ(H)).

Lemma 3.20. The k-strong components are pairwise disjoint.

Proof. Consider k-strong components A and B. Assume A ∩ B 6= ∅, then λ(G[A ∪ B]) ≥
min(λ(G[A]),λ(G[B])) ≥ k using triangle inequality for connectivity. This shows A =

A ∪B = B by maximality of A and B.

3.6.3 Estimating strengths in uncapacitated hypergraphs

In this section, we consider uncapacitated hypergraphs and describe a near-linear time

algorithm to estimate the strengths of all edges as stated in Theorem 3.17. Let H = (V ,E)

be the given hypergraph. The high-level idea is simple. We assume that there is a fast

algorithm WeakEdges(H, k) that returns a set of edges E ′ ⊆ E such that E ′ contains all

the k-weak edge in E; the important aspect here is that the output may contain some edges

which are not k-weak, however, the algorithm should not output too many such edges (this

will be quantified later).

60

The estimation algorithm is defined in Figure 3.4. The algorithm repeatedly calls

WeakEdges(H, k) for increasing values of k while removing the edges found in previous

iterations.

Estimation(H)
Compute a number k such that γH(e) ≥ k for all e ∈ E(H)
H0 ← H, i← 1
while there are edges in Hi−1

Fi ←WeakEdges(Hi−1, 2ik)
for e ∈ Fi

γ′(e)← 2i−1k
Hi ← Hi−1 − Fi
i← i+ 1

return γ′

Figure 3.4: The estimation algorithm

Lemma 3.21. Let H = (V ,E) be an uncapacitated hypergraph. Then,

1. For each e ∈ Fi, γ(e) ≥ 2i−1k. That is, the strength of all edges deleted in iteration i

is at least 2i−1k.

2. For each e ∈ E, γ′(e) ≤ γ(e).

Proof. γHi(e) ≤ γH(e) for all i and e ∈ E(Hi) because deleting edges cannot increase

strength. Let Ei denote the set of edges in Hi with E0 = E.

We prove that 2ik ≤ γHi(e) for all e ∈ Ei by induction on i. If i = 0, then k ≤ γH0(e)

for all e ∈ E0. Now we assume i > 0. At end of iteration (i − 1), by induction, we have

that γHi−1
(e) ≥ 2i−1k for each e ∈ Ei−1. In iteration i, Fi contains all 2ik-weak edges in the

graph Hi−1. We hav Ei = Ei−1 − Fi. Thus, for any edge e ∈ Ei, γH(e) ≥ γHi−1
(e) ≥ 2ik.

This proves the claim.

Since Fi ⊆ Ei−1, it follows from the previous claim that γH(e) ≥ 2i−1k for all e ∈ Fi. Since

the Fi form a partition of E, we have γ′(e) ≤ γH(e) for all e ∈ E.

Note that in principle WeakEdges(H, k) could output all the edges of the graph for any

k ≥ λ(H). This would result in a high cost for the resulting strength estimate. Thus, we need

some additional properties on the output of the procedure WeakEdges(H, k). Let H =

(V ,E) be a hypergraph. A set of edges E ′ ⊆ E is called `-light if |E ′| ≤ `(κ(H−E ′)−κ(H)).

Intuitively, on average, we remove ` edges in E ′ to increase the number of components of H

by 1.

61

Lemma 3.22. If WeakEdges(H, k) outputs a set of αk-light edges for all k, then the output

γ′ of the algorithm Estimation(H) satisfies the 2α-cost property. That is,
∑

e∈E
1

γ′(e)
≤

2α(n− 1).

Proof. From the description of Estimation(H), and using the fact that the edges sets

F1,F2, . . . , partition E, we have
∑

e∈E
1

γ′(e)
=
∑

i≥1 |Fi|
1

2i−1k
.

Fi is the output of WeakEdges(Hi−1, 2ik). From the lightness property we assumed,

|Fi| ≤ α2ik(κ(Hi)− κ(Hi−1)). Combining this with the preceding equality,

∑
e∈E

1

γ′(e)
=
∑
i≥1

|Fi|
1

2i−1k
≤
∑
i≥1

2α(κ(Hi)− κ(Hi−1)) ≤ 2α(n− 1). (3.42)

Implementing WeakEdges

We now show describe an implementation of WeakEdges(H, k) that outputs a 4rk-light

set.

Let H = (V ,E) be a hypergraph. An edge e is k-crisp with respect to H if it crosses a cut

of value less than k. In other words, there is a cut X, such that e ∈ δ(X) and |δ(X)| < k.

Note that any k-crisp edge is k-weak. A set of edges E ′ ⊆ E is a k-partition, if E ′ contains

all the k-crisp edges in H. A k-partition may contain non-k-crisp edges.

We will assume access to a subroutine Partition(H, k) that given H and integer k, it

finds a 2k-light k-partition of H. We will show how to implement Partition later. See

Figure 3.5 for the implementation of WeakEdges.

WeakEdges(H, k)
E ′ ← ∅
repeat 1 + log2 n times:

E ′ ← E ′ ∪Partition(H, 2rk)
H ← H − E ′

return E ′

Figure 3.5: Algorithm for returning a 4rk-light set of all k-weak edges in H.

Theorem 3.20. WeakEdges(H, k) returns a 4rk-light set E ′ such that E ′ contains all the

k-weak edges of H with O(log n) calls to Partition.

Proof. First, we assume H has no k-strong component with more than 1 node and that H

is connected. Then all edges are k-weak and the number of k-weak edges in H is at most

62

k(n−1) by Corollary 3.6. It also implies that
∑

v deg(v) ≤ rk(n−1). By Markov’s inequality

at least half the nodes have degree less than 2rk. For any node v with degree less than 2rk,

all edges incident to it are 2rk-crisp. Thus, after the first iteration, all such nodes become

isolated since Partition(H, 2rk) contains all 2rk-crisp edges. If H is not connected then

we can apply this same argument to each connected component and deduce that at least

half of the nodes in each component will be isolated in the first iteration Therefore, in log n

iterations, all nodes become isolated. Hence WeakEdges(H, k) returns all the edges of H.

Now consider the general case when H may have k-strong components. We can apply the

same argument as above to the hypergraph obtained by contracting each k-strong component

into a single node. The is well defined because the k-strong components are disjoint by

Lemma 3.20.

Let the edges removed in the ith iteration to be Ei, and the hypergraph before the edge

removal to be Hi. So Hi+1 = Hi − Ei. Recall that Partition(Hi, 2rk) returns a 4rk-light

set. Hence we know |Ei| ≤ 4rk(κ(Hi+1)− κ(Hi)).

|E ′| =
∑
i≥1

|Ei| ≤
∑
i≥1

4rk(κ(Hi+1)− κ(Hi)) = 4rk(κ(H − E ′)− κ(H)) (3.43)

This shows E ′ is 4rk-light.

It remains to implement Partition(H, k) that returns a 2k-light k-partition. To do this,

we use k-sparse certificates. Recall by Theorem 3.7, we can obtain a k-sparse certificate in

O(p) time.

A k-sparse certificate E ′ is certainly a k-partition. However, E ′ may contain too many

edges to be 2k-light. Thus, we would like to find a smaller subset of E ′. Note that every

k-crisp edge must be in a k-sparse certificate and hence no edge in E \ E ′ can be k-crisp.

Hence we will contract the edges in E \E ′, and find a k-sparse certificate in the hypergraph

after the contraction. We repeat the process until eventually we reach a 2k-light set. See

Figure 3.6 for the formal description of the algorithm.

Theorem 3.21. Partition(H, k) outputs a 2k-light k-partition in O(p log n) time.

Proof. If the algorithm either returns all the edges of the graph H in the first step then it

is easy to see that the output is a 2k-light k-partition since the algorithm explicitly checks

for the lightness condition.

Otherwise let E ′ a k-sparse certificate of H. As we argued earlier, E − E ′ contains no

k-crisp edges and hence contracting them is safe. Moreover, all the original k-crisp edges

remain k-crisp after the contraction. Since the algorithm recurses on the new graph, this

establishes the correctness of the output.

63

Partition(H, k)
if number of edges in H ≤ 2k(n− κ(H))

E ′ ←edges in H
return E ′

else
E ′ ← k-sparse certificate of H
H ← contract all edges of H − E ′
return Partition(H, k)

Figure 3.6: Algorithm for returning a 2k-light k-partition.

We now argue for termination and running time by showing that the number of nodes

halves in each recursive call. Assume H contains n nodes, the algorithm finds a k-sparse

certificate and contracts all edges not in the certificate. The resulting hypergraph has n′

nodes and m′ edges. We have m′ ≤ k(n − 1) by Theorem 3.7. If n′ − 1 ≤ (n − 1)/2,

then the number of nodes halved. Otherwise n′ − 1 > (n− 1)/2, then the number of edges

m′ ≤ k(n− 1) < 2k(n′ − 1), and the algorithm terminates in the next recursive call.

The running time of the algorithm for a size p hypergraph with n nodes is T (p,n). T (p,n)

satisfies the recurrence T (p,n) = O(p) + T (p,n/2) = O(p log n).

Putting things together, Estimation(H) finds the desired O(r)-approximate strength.

Theorem 3.22. Let H = (V ,E) be a uncapacitated hypergraph. The output γ′ of Estimation(H)

is a O(r)-approximate strength function of H. Estimation(H) can be implemented in

O(p log2 n log p) time.

Proof. Combining Lemma 3.21, Lemma 3.22 and Theorem 3.20, we get the output γ′ of

Estimation(H) is a O(r)-approximate strength function. The maximum strength in the

graph is at most p, all edges with be removed at the (1 + log p)th iteration of the while

loop. In each iteration, there is one call to WeakEdges. Each call of WeakEdges takes

O(p log2 n) time by combining Theorem 3.21 and Theorem 3.20. The step outside the while

loop takes linear time, since we can set k to be 1 as a lower bound of the strength. Hence

overall, the running time is O(p log2 n log p).

3.6.4 Estimating strengths in capacitated hypergraphs

Consider a capacitated hypergraph H = (V ,E) with an associated capacity function

c : E → N+; that is, we assume all capacities are non-negative integers. For proving

correctness, we consider an uncapacitated hypergraph H ′ that simulates H. Let H ′ contain

64

c(e) copies of edge e for every edge e in H; one can see that the strength of each of the copies

of e in H ′ is the same as the strength of e in H. Thus, it suffices to compute strengths of

edges in H ′. We can apply the correctness proofs from the previous sections to H ′. In the

remainder of the section we will only be concerned with the running time issue since we do

not wish to explicitly create H ′. We say H is the implicit representation of H ′.

By Theorem 3.7, we can find k-sparse certificate E ′ of H ′ such that |E ′| ≤ k(n − 1), in

O(p+ n log n) time, where p is the number of edges in the implicit representation.

The remaining operations in Partition and WeakEdges consist only of adding edges,

deleting edges and contracting edges. These operations take time only depending on the size

of the implicit representation. Therefore the running time in Theorem 3.21 and Theorem 3.20

still holds for capacitated hypergraph.

Lemma 3.23. Suppose we are given a hypergraph H = (V ,E) and a lower bound b on the

strengths of the edges. If the total capacity of all edges is at most bM , then Estimation(H)

can be implemented in O(p log2 n logM) time.

Proof. Because b is a lower bound of the strength, we can set k to be b in the first step. The

maximum strength in the graph is at most bM , all edges will be removed at the (1+logM)th

iteration of the while loop. Each iteration calls WeakEdges once, hence the running time

is O(p log2 n logM).

The running time in Lemma 3.23 can be improved to strongly polynomial time by using

the windowing technique [23].

Assume we have disjoint intervals I1, . . . , It where for every e ∈ E, γ(e) ∈ Ii for some

i. In addition, assume Ii = [ai, bi], bi ≤ p2ai and bi ≤ ai+1 for all i. We can essentially

apply the estimation algorithm to edges with strength inside each interval. Let Ei be the

set of edges whose strengh lies in interval Ii. Indeed, let Hi to be the graph obtained from

H by contracting all edges in Ej where j > i, and deleting all edges in Ej′ where j′ < i.

For edge e ∈ Ei let e′ be its corresponding edge in Hi. From Lemma 3.18, γHi(e
′) = γH(e).

The total capacity of Hi is at most pbi ≤ p3ai. We can run Estimation(Hi) to estimate

γHi since the ratio between the lower bound ai and upper bound bi is p3. Let pi be the

size of Hi, and ni be the number of nodes in Hi, the running time for Estimation(Hi)

is O(pi log2 ni log pi) by Lemma 3.23. The total running time of Estimation over all Hi

is O(
∑

i pi log2 ni log pi) = O(p log2 n log p). Constructing Hi from Hi+1 takes O(pi + pi+1)

time: contract all edges in Hi+1 and then add all the edges ei where γ(e) ∈ Ii. Therefore we

can construct all H1, . . . ,Ht in O(p) time.

It remains to find the intervals I1, . . . , It. For each edge e, we first find values de, such

65

that de ≤ γ(e) ≤ pde. The maximal intervals in
⋃
e∈E[de, pde] are the desired intervals. We

now describe the procedure to find the values de for all e ∈ E.

Definition 3.3. The star approximate graph A(H) of H is a capacitated graph obtained by

replacing each hyperedge e in H with a star Se, where the center of the star is an arbitrary

node in e, and the star spans each node in e. Every edge in Se has capacity equal to the

capacity of e.

It is important that A(H) is a multigraph: parallel edges are distinguished by which

hyperedge it came from. We define a correspondence between the edges in A(H) and H by

a function π. For an edge e′ in A(H), π(e′) = e if e′ ∈ Se. Let T be a maximum capacity

spanning tree in A(H). For e ∈ E, define Te to be the minimal subtree of T that contains

all nodes in e. Note that all the leaves of Te are nodes from e.

For any two nodes u and v, we define duv to be the capacity of the minimum capacity

edge in the unique u-v-path in T . For each edge e ∈ E we let de = minu,v∈e duv. We will

show de satisfies the property that de ≤ γ(e) ≤ pde.

Let Ve =
⋃
e′∈Te π(e′). Certainly, γ(e) ≥ λ(H[Ve]), because all nodes of e are contained in

Ve. λ(H[Ve]) ≥ de because every cut in H[Ve] has to cross some π(e′) where e′ ∈ Te, and the

capacity of π(e′) is at least de. Hence γ(e) ≥ de.

We claim if we remove all edges in H with capacity at most de, then it will disconnect

some s, t ∈ e. If the claim is true then e crosses a cut of value at most pde. By Lemma 3.17,

γ(e) ≤ pde. Assume that the claim is not true. Then, in the graph A(H) we can remove all

edges with capacity at most de and the nodes in e will still be connected. We can assume

without loss of generality that the maximum capacity spanning tree T in A(H) is computed

using the greedy Kruskal’s algorithm [90]. This implies that Te will contain only edges with

capacity strictly greater than de. This contradicts the definition of de.

A(H) can be constructed in O(p) time. The maximum spanning tree T can be found in

O(p + n log n) time. We can construct a data structure on T in O(n) time, such that for

any u, v ∈ V , it returns duv in O(1) time. [91] To compute de, we fix some node v in e, and

compute de = minu∈e,v 6=u duv using the data structure in O(|e|) time. Computing de for all

e takes in O(
∑

e∈E |e|) = O(p) time. The total running time is O(p+ n log n). We conclude

the following theorem.

Lemma 3.24. Given a capacitated hypergraph H, we can find a value de for each edge e,

such that de ≤ γ(e) ≤ pde in O(p+ n log n) time.

The preceding lemma gives us the desired intervals. Using Lemma 3.23, we have the

desired theorem.

66

Theorem 3.23. Given a rank r capacitated hypergraph H with capacity function c, in

O(p log2 n log p) time, one can find a O(r)-approximate strength function of H.

3.7 OPEN PROBLEMS

We close with some open problems. The main one is to find an algorithm for hypergraph

min-cut that is faster than the current one that runs in O(np + n2 log n) time. We do not

know a better deterministic run-time even when specialized to graphs. However we have

a randomized near-linear time algorithm for graphs [46]. Can Karger’s algorithm be ex-

tended to hypergraphs with fixed rank r? Recently there have been several fast st max-flow

algorithms for graphs and digraphs. The algorithms for digraphs [89, 92] have straight for-

ward implications for hypergraph st-cut computation via the equivalent digraph. However,

hypergraphs have additional structure and it may be possible to find faster (approximate)

algorithms.

We described a linear time algorithm to find a maximum flow between the last two nodes

of a tight-ordering of a hypergraph (the flow is in the equivalent digraph of the hypergraph).

We believe that such a linear time algorithm is also feasible for the last two nodes of an

MA-ordering of a hypergraph.

We obtained a fast algorithm that outputs O(r)-approximate strengths of a hypergraph.

Can we compute O(1)-approximate strengths in near linear time? This would allow us

to avoid the extra factor of r in Corollary 3.5. Kogan and Krauthgamer [24] given an

upper bound on the sparsifier in terms of edges. This translates to an upper bound on the

representation size but when r is large it may not be tight. Can one prove lower bounds on

the number of edges or the representation size of a (1 + ε)-cut sparsifier for hypergraphs?

67

Chapter 4: Hypergraph k-cut and constant span hedge k-cut

The hypergraph k-cut problem is the following:

Hypergraph-k-Cut: Given a hypergraph, find a smallest subset of hyperedges whose re-

moval ensures that the number of connected components in the remaining hypergraph is at

least k.

Equivalently, the problem asks for a partitioning of the node set into k parts with minimum

number of hyperedges crossing the partition. This is an extension of the classic hypergraph

min-cut problem studied in the previous chapter. Hypergraph partitioning problems were

discussed as early as in 1973 by Lawler [80] and have several applications including clustering

in VLSI design and network reliability (e.g., see [1, 2, 27, 93]).

A special case of Hypergraph-k-Cut in which the input is in fact a graph (i.e., all

hyperedges have cardinality two) is the graph k-cut problem (abbreviated Graph-k-Cut).

Graph-k-Cut has been investigated thoroughly in the literature. When k is part of the

input, Goldschmidt and Hochbaum showed that Graph-k-Cut is NP-Hard [27] while

Saran and Vazirani designed a 2-approximation algorithm [94]. When k is a constant, Gold-

schmidt and Hochbaum gave the first polynomial time algorithm to solve Graph-k-Cut.

Their algorithm runs in time nΘ(k2), where n is the number of nodes in the input graph [27].

Karger and Stein [29] designed a randomized algorithm for Graph-k-Cut that runs in

time O(n2(k−1) log3 n) which is also the current-best run-time among randomized algorithms.

The deterministic run-time for solving Graph-k-Cut has been improved over a series of

works [30,31,95] with the current best run-time being Õ(n2k) due to Thorup [28].

The complexity of Hypergraph-k-Cut has remained an intriguing open problem since

the works of Goldschmidt and Hochbaum (1994) and Saran and Vazirani (1995). As we

have seen in the previous chapter, the case of k = 2, denoted Hypergraph-2-Cut, is

well-known to admit deterministic polynomial time algorithms [69, 70, 80]. When k is part

of the input, Hypergraph-k-Cut is NP-Hard as observed from Graph-k-Cut. Chekuri

and Li [26] recently showed that Hypergraph-k-Cut is at least as hard as the densest k-

subgraph problem from the perspective of approximability. The densest k-subgraph problem

is believed to not admit an efficient constant factor approximation assuming P 6= NP ;

it is known to not admit an efficient n1/(log logn)c-approximation for some constant c > 0

assuming the exponential time hypothesis [96]. Chekuri and Li’s result already illustrates

that Hypergraph-k-Cut is significantly harder than Graph-k-Cut when k is part of the

input.

When k is a constant, several recent works have aimed at designing polynomial time

68

algorithms but have fallen short because they are efficient/return an optimal solution only

for either restricted families of hypergraphs or for restricted values of the constant k. We

recall these results now. Fukunaga [97] gave a polynomial time algorithm for Hypergraph-

k-Cut in constant rank hypergraphs. A randomized polynomial time algorithm for Hyper-

graph-k-Cut in constant rank hypergraphs for constant k can also be obtained using the

uniform random contraction technique of Karger and Stein [29] as illustrated by Kogan

and Krauthgamer [24]. Moving to arbitrary rank hypergraphs, Xiao [93] showed a non-

crossing structural property of an optimal solution and used it to to design a polynomial

time algorithm for Hypergraph-3-Cut. Okumoto, Fukunaga and Nagamochi [98] reduced

Hypergraph-k-Cut for constant k to the node-capacitated k-way cut problem in graphs1

and thus obtained a 2(1−1/k)-approximation. They further improved on this approximation

factor for k = 4, 5, 6. Thus, it has been open to determine the complexity of Hypergraph-

k-Cut for constant k ≥ 4.

We present a randomized polynomial time algorithm to solve Hypergraph-k-Cut for

constant k in arbitrary rank hypergraphs. This is the first polynomial time algorithm for

Hypergraph-k-Cut for constant k.

In the s− t hedge cut problem (abbreviated st-Hedge-Cut), the input is a hedgegraph

and the goal is to find a smallest subset of hedges whose removal disconnects s and t in the

underlying graph. In the global variant of st-Hedge-Cut (abbreviated Hedge-2-Cut), the

input is a hedgegraph and the goal is to find a smallest subset of hedges whose removal leads

to at least two connected components in the underlying graph. It is known that st-Hedge-

Cut is NP-Hard [39], even if each hedge consists of exactly two edges [40], while Ghaffari

et al. showed that Hedge-2-Cut admits a randomized polynomial time approximation

scheme [3]. Ghaffari et al. [3] also gave a quasi-polynomial time algorithm to solve Hedge-

2-Cut. It remains open to design a polynomial time algorithm for Hedge-2-Cut. We

make progress towards this question by addressing an interesting and non-trivial family of

instances that we describe next. We will later show that this family already encompasses

hypergraphs.

The span of a hedge is the number of connected components in the subgraph induced by

the edges in the hedge. The span of a hedgegraph is the largest span among its hedges.

Hedge-2-Cut in hedgegraphs with span one reduces to Hypergraph-2-Cut (by replac-

ing each hedge by a hyperedge over the set of nodes incident to the edges in the hedge) and is

hence solvable efficiently. The complexity of Hedge-2-Cut for constant span hedgegraphs

1The node-capacitated k-way cut problem is the following: Given a graph with capacities on the nodes
and a collection of terminal nodes, remove a smallest capacity subset of non-terminal nodes so that the
resulting graph has no path between the terminals.

69

was raised as an open problem by Coudert et al. [99]. We generalize the techniques for

Hypergraph-k-Cut to design a polynomial-time algorithm for Hedge-2-Cut in constant

span hedgegraphs. More generally, we consider the hedge k-cut problem:

Hedge-k-Cut: The input is a hedgegraph and the goal is to find a smallest subset of hedges

whose removal leads to at least k connected components in the underlying graph.

Equivalently, the problem asks for a partitioning of the node set into k parts with minimum

number of hedges crossing the partition . We show that Hedge-k-Cut for hedgegraphs

with constant span is tractable for constant k.

We next generalize the ideas behind the randomized polynomial time approximation

scheme for Hedge-2-Cut by Ghaffari, Karger and Panigrahi [3] to obtain a randomized

polynomial time approximation scheme for Hedge-k-Cut for constant k (for all input

hedgegraphs irrespective of their span). The algorithms and analysis also lead to combina-

torial bounds on the number of optimal solutions.

4.1 RESULTS

Recall p represents the input-size of the hedgegraphs.

Theorem 4.1. For every non-negative constant integer s, there exists a randomized poly-

nomial time algorithm to solve Hedge-k-Cut in hedgegraphs with span at most s that runs

in time O(mpnks+k−s log n) and succeeds with probability at least 1− 1/n.

For an input hypergraph, let n denote the number of nodes and let p denote the sum

of the cardinality of the hyperedges. We show a reduction from Hypergraph-k-Cut to

Hedge-k-Cut in 1-span hedgegraphs. This reduction in conjunction with Theorem 4.1

immediately leads to a randomized polynomial time algorithm for Hypergraph-k-Cut

with run-time O(mpn2k−1 log n). We save a factor of m on this run-time by specializing the

run-time analysis of the same algorithm that is used in Theorem 4.1 for hypergraphs.

Theorem 4.2. There exists a randomized polynomial time algorithm to solve Hypergraph-

k-Cut that runs in time O(pn2k−1 log n) and succeeds with probability at least 1− 1/n.

We mention that for the special case of k = 2, namely Hypergraph-2-Cut, Ghaffari et

al. gave an algorithm based on random contractions [3]. Their algorithm picks a hyperedge

to contract according to a distribution that requires knowledge of the value of the optimum

2-cut. They suggest addressing this issue by a standard technique: employ a binary search

70

to find the optimum 2-cut value. In contrast, the contraction algorithm for Hypergraph-

2-Cut that follows from Theorem 4.2 does not require knowledge of the optimum cut value

and is easy to implement. More importantly, it generalizes naturally to resolve the complex-

ity of the more general problem of Hypergraph-k-Cut.

A set C of hyperedges in a hypergraph G is said to be a k-cut-set if the removal of C from

G results in a hypergraph with at least k connected components. A k-cut-set in G is an min-

k-cut-set if its cardinality is equal to the minimum number of hyperedges whose removal

from G results in a hypergraph with at least k connected components. Our algorithmic

technique also leads to the following bound on the number of min-k-cut-sets:

Corollary 4.1. The number of distinct minimum k-cut-sets in an n-node hypergraph is

O(n2(k−1)).

As special cases, the bound stated in Corollary 4.1 recovers (i) the bound on the number

of min-k-cut-sets in graphs by Karger and Stein [29] as well as (ii) the bound on the number

of min-cut-sets in hypergraphs [3, 7].

Next, we generalize the techniques underlying the randomized polynomial time approxima-

tion scheme for Hedge-2-Cut by Ghaffari, Karger and Panigrahi [3] to obtain a randomized

polynomial time approximation scheme for Hedge-k-Cut. In contrast to Theorem 4.1, this

result holds for hedgegraphs with arbitrary span. A set C of hedges in a hedgegraph G is

said to be a hedge k-cut-set if the removal of C leads to at least k connected components

in the underlying graph. For α > 1, a hedge k-cut-set C is said to be an α-approximate

minimum hedge k-cut-set if |C| is at most α times the minimum number of hedges whose

removal leads to at least k connected components in the underlying graph.

Theorem 4.3. For any given ε > 0, there exists a randomized algorithm to find a (1 + ε)-

approximate minimum hedge k-cut-set in time pnO(log(1/ε)) log n that succeeds with probability

at least 1− 1/n.

Setting ε to be a value that is strictly smaller than 1/λ, where λ is the value of a minimum

hedge k-cut-set in the input hedgegraph, we observe that a (1 + ε)-approximate minimum

hedge k-cut-set would in fact be a minimum hedge k-cut-set. Thus, Theorem 4.3 gives a

quasi-polynomial time algorithm to solve Hedge-k-Cut (the value of λ can be found by a

binary search). We mention that the run-time dependence on k for the algorithm mentioned

in Theorem 4.3 is in the exponent and hence the algorithm is not a polynomial-time algo-

rithm if k is not a constant.

71

Our algorithmic technique can also be used to bound the number of min-k-cut-sets in

hedgegraphs.

Theorem 4.4. The number of distinct minimum hedge k-cuts-set in an n-node hedgegraph

with minimum hedge k-cut-set value λ is nO(k+log λ).

Organization. We present the preliminaries in Section 4.2, prove Theorems 4.1 and 4.2 in

Section 4.3, and Theorems 4.3 and 4.4 in Section 4.4.

4.1.1 Related work

For Graph-k-Cut with k being a part of the input, Saran and Vazirani [94] designed

a polynomial-time 2-approximation algorithm. Manurangsi [100] showed that there is no

polynomial-time (2 − ε)-approximation for any constant ε > 0 assuming the Small Set

Expansion Hypothesis [101]. Gupta, Lee and Li [102] designed an algorithm that runs in

time O(2k
6
n4) to achieve an approximation factor of 2− δ for some constant δ > 0.

Approximation algorithms for the hypergraph k-cut problem, the hypergraph k-partitioning

problem, and more generally, submodular partitioning problems have been well-studied in

the literature. The hypergraph k-partitioning problem is similar in flavor to the hypergraph

k-cut problem but it minimizes a different objective. In the hypergraph k-partitioning prob-

lem, the input is a hypergraph and the goal is to find a partitioning of the node set into k

non-empty parts V1, . . . ,Vk so that
∑k

i=1 |δ(Vi)| is minimum (where δ(Vi) is the set of hyper-

edges that cross the part Vi). The hypergraph k-partitioning problem and the hypergraph

k-cut problem coincide to Graph-k-Cut when the input hypergraph is a graph. The hy-

pergraph k-partitioning problem is a special case of the submodular k-partitioning problem

since the hypergraph cut function is submodular. In the submodular k-partitioning problem,

the input is a non-negative submodular set function f : 2V → R+ (given by the evaluation

oracle) and the goal is to partition the ground set V into k non-empty sets V1, . . . ,Vk so

that
∑k

i=1 f(Vi) is minimum. Submodular k-partitioning for the case of k = 3 admits an

efficient algorithm [98] while approximation algorithms have been designed for larger con-

stants k [98, 103]. Submodular k-partitioning for k = 4 admits an efficient algorithm if the

input function is symmetric [35].

We also mention that approximation algorithms are known for the variant of submodular

partitioning that separates a given set of k elements [103, 104]. In submodular k-way par-

titioning, the input is a non-negative submodular set function f : 2V → R+ (given by the

evaluation oracle) and distinct elements v1, . . . , vk ∈ V , and the goal is to find a partitioning

of the ground set V into k non-empty sets V1, . . . ,Vk with vi ∈ Vi ∀ i ∈ {1, . . . , k} so that

72

∑k
i=1 f(Vi) is minimum. This generalizes the hypergraph k-way cut problem (where the goal

is to delete the smallest number of hyperedges in order to disconnect a given collection of k

nodes in the input hypergraph). The current-best known approximation factor for submod-

ular k-way partitioning is 2 for general submodular functions and 3/2− 1/k for symmetric

submodular functions.

The main motivation behind the definition of hedgegraphs is to understand the connectiv-

ity properties of modern networks in which the reliability of links have certain dependencies.

In particular, the links could depend on a common resource. Two natural models of link

failures have been considered in the literature: a link could fail if either all or at least one of

the resources that the link depends upon fails [99]. The definition of hedgegraphs considers

the former model where a link fails only if all resources that the link depends upon fail. The

term hedgegraph for this model was given by Ghaffari, Karger and Panigrahi [3] who also

showed that Hedge-2-Cut has a randomized polynomial time approximation scheme.

4.2 PRELIMINARIES

For positive integers a and b with a < b, we will follow the convention that the inverse

binomial expression
(
a
b

)−1
is 1 and

(
a
b

)
is 0.

Let G = (V ,E) be a hedgegraph. For a hedge e, we use r(e) to denote the number of

nodes incident to the edges in e. For a hedge e ∈ E, let G[e] denote the subgraph induced

by the edges in e. We emphasize that there are no isolated nodes in G[e]. Let V (e) denote

the nodes in G[e]. We recall that r(e) = |V (e)|. Let s(e) denote the number of connected

components in G[e], i.e., the span of e. Let s := max{s(e) : e ∈ E}, i.e., s denotes the span

of the hedgegraph G. The size of a hedgegraph is the number of edges in the underlying

hedgegraph.

Our algorithm is based on repeated contractions. Our notion of the contraction operation

is identical to the well-known notion that appears in the literature. We define this operation

on hedgegraphs formally for the sake of completeness. Let U ⊆ V be a subset of nodes in G.

We define G contract U , denoted G/U , to be a hedgegraph on node set V ′ := (V −U)∪{u},
where u is a newly introduced node, and on hedge set E ′, where E ′ is obtained as follows:

for each hedge e ∈ E, we define the hedge e′ to be

e′ :={({a, b} − U) ∪ {u} : |{a, b} ∩ U | = 1, {a, b} ∈ e} (4.1)

∪{{a, b} : {a, b} ∩ U = ∅, {a, b} ∈ e} (4.2)

and obtain E ′ := {e′ : e′ 6= ∅, e ∈ E}. For a hedge e ∈ E, let C1, . . . ,Cs(e) denote the node

73

sets of connected components in G[e]. The hedgegraph obtained by contracting the hedge

e, denoted G/e, is the hedgegraph obtained by contracting the node set of each component

in G[e] individually, i.e., G/e := G/C1/C2/ . . . /Cs(e). We observe that contracting a hedge

does not increase the span.

We need the following technical lemma.

Lemma 4.1 (Majorization inequality, e.g., see Theorem 108 in [105]). Let y1, . . . , y` and

x1, . . . ,x` be two finite non-increasing sequence of real numbers in [a, b] with the same sum.

Let f : [a, b]→ R be a convex function. If
∑j

i=1 yi ≤
∑j

i=1 xi for all 1 ≤ j ≤ `, then

∑̀
i=1

f(yi) ≤
∑̀
i=1

f(xi). (4.3)

4.3 HEDGE K-CUT IN CONSTANT SPAN HEDGEGRAPHS

In this section, we design an algorithm to solve Hedge-k-Cut in constant span hedge-

graphs. In Section 4.3.1, we give an outline of the algorithm for Hypergraph-2-Cut

to present the main ideas underlying our algorithm for Hypergraph-k-Cut. In Section

4.3.2, we present the complete algorithm and the analysis for Hedge-k-Cut in constant

span hedgegraphs. In Section 4.3.3, we improve on the run-time analysis of the same al-

gorithm by specializing it to hypergraphs and also conclude a combinatorial bound on the

number of distinct minimum k-cut-sets.

4.3.1 Overview

We recall Karger’s uniform random contraction algorithm for graphs (more generally,

multigraphs): pick an edge uniformly at random, contract it and repeat until there are 2

nodes left at which point output the edges between the two nodes. In order to analyze the

correctness, one can fix a min-cut C and argue that most of the edges will not be in C.

Indeed, suppose the value of the min-cut is λ, then every isolating cut (i.e., a cut induced

by a single node) has value at least λ, and hence the number of edges is at least nλ/2.

Consequently, the probability of picking an edge in C is at most 2/n.

Now consider the above algorithm for hypergraphs under the standard definition of hy-

peredge contraction (the graph G/e is obtained by removing the nodes of the hyperedge e,

introducing a new node v and for every other hyperedge f in G that intersects e, replacing f

by (f \e)∪{v} and removing hyperedges with cardinality one). If we use the same algorithm

74

as above to solve Hypergraph-2-Cut, then it is unclear how to analyze the resulting al-

gorithm. This is due to the existence of n-node hypergraphs for which a hyperedge from a

min-cut could be chosen for contraction with probability as large as a constant and not at

most 2/n. We overcome this issue by choosing a hyperedge to contract from a non-uniform

probability distribution.

We now present this non-uniform distribution along with the analysis. Let n be the

number of nodes in the input hypergraph G = (V ,E). For each hyperedge e ∈ E, we define

a “dampening factor” δe to be the probability that a uniformly random node from V does

not belong to e. We use r(e) to denote the rank of a hyperedge e. Thus,

δe =
n− r(e)

n
. (4.4)

We note that δe = 0 implies that e contains every node in the graph and hence is in every

cut. Our algorithm for Hypergraph-2-Cut is the following: pick a hyperedge e with

probability proportional to δe, contract and repeat until either (i) the number of nodes is at

most 4 in which case, output all optimum solutions in the constant-sized current hypergraph

or (ii) the dampening factor of all hyperedges is zero in which case, output all hyperedges in

the current graph. The run-time of the algorithm is polynomial as contraction and updating

the dampening factors can be implemented in polynomial-time.

In order to analyze the correctness probability of this algorithm, let us define

qn := min
G: n-node hypergraph

C∗: hyperedges of a min-cut in G

Pr(Algorithm outputs C∗ when executed on G). (4.5)

We show that qn ≥
(
n
2

)−1
by induction on n. For the base case, we consider n ≤ 4 and

observe that the algorithm is correct with probability one on such n-node hypergraphs. For

the induction step, let n > 4. Fix a n-node hypergraph G = (V ,E) and the hyperedges C∗

of a min-cut in G that together achieve the minimum for qn. We may assume that there

exists a hyperedge in G whose dampening factor is not zero for otherwise, all hyperedges are

in every cut and hence, the output is in fact an optimum and consequently, the correctness

probability is one. Now, the probability that the algorithm returns C∗ when executed on G

is at least the probability of choosing a hyperedge e ∈ E \C∗, contracting it and succeeding

on the remaining hypergraph. The number of nodes in the hypergraph after contracting e

is n− r(e) + 1. Let pe be the probability of contracting e. Hence,

qn ≥
∑

e∈E\C∗
peqn−r(e)+1 =

1∑
f∈E δf

·
∑

e∈E\C∗
δeqn−r(e)+1. (4.6)

75

Now, consider a hyperedge e ∈ E \C∗. We have n− r(e) ≥ 1 for otherwise the hyperedge e

is in every cut and would be in C∗. Moreover, r(e) ≥ 2 since our current hypergraph never

contains a hyperedge with cardinality one. Thus, n − r(e) + 1 ≤ n − 1. By the inductive

hypothesis, we have qn−r(e)+1 ≥
(
n−r(e)+1

2

)−1
. Hence,

δeqn−r(e)+1 ≥
n− r(e)

n
· 1(

n−r(e)+1
2

) =
2

n(n− r(e) + 1)
≥ 2

n(n− 1)
=

1(
n
2

) (4.7)

and consequently,

qn ≥
1∑

f∈E δf

∑
e∈E\C∗

1(
n
2

) =
1(
n
2

) · |E \ C∗|∑
f∈E δf

. (4.8)

It remains to argue that |E \ C∗| ≥
∑

f∈E δf . By rewriting the inequality, it suffices to

show that the cardinality |C∗| of a min-cut is at most |E| −
∑

f∈E δf . We will show this by

an averaging argument. Consider the size of the set Fv of hyperedges containing a node v.

Since Fv is a cut (as it isolates the node v), the cardinality |C∗| of a min-cut is at most |Fv|
for every v ∈ V . Now, consider Fv when v is chosen uniformly. We have (by using 1v∈f to

denote the indicator function that indicates if the node v is in the hyperedge f)

|C∗| ≤ Ev∈V (|Fv|) = Ev∈V

(∑
f∈E

1v∈f

)
(4.9)

=
∑
f∈E

Prv∈V (v ∈ f) (4.10)

=
∑
f∈E

(1− Prv∈V (v 6∈ f)) (4.11)

=
∑
f∈E

(1− Prv∈V (v 6∈ f)) (4.12)

=
∑
f∈E

(1− δf) (by the definition of δf) (4.13)

= |E| −
∑
f∈E

δf . (4.14)

Thus, the algorithm succeeds with probability at least
(
n
2

)−1
. Executing it O(n2 log n) times

and returning the best answer among all executions gives an optimum solution with high

probability. Our algorithm for Hypergraph-k-Cut and for Hedge-k-Cut in constant

span hedgegraphs extends the above algorithm by a careful generalization of the dampening

factor.

76

4.3.2 The contraction algorithm

For ease of description and analysis, we will focus on the minimum cardinality variant of

Hedge-k-Cut. We will specify how to adapt it to solve the minimum cost variant at the end

of the section. We will present an algorithm that outputs a particular minimum hedge k-cut-

set with inverse polynomial probability. Hence, returning a hedge k-cut-set with minimum

value among the ones output by polynomially many executions of the contraction algorithm

will indeed find a minimum hedge k-cut-set with constant probability. For the purposes of

Hypergraph-k-Cut, we recommend the reader to consider s = 1 in the following algorithm

and analysis (with the standard notion of hyperedge contraction).

Let n be the number of nodes in the input hedgegraph G = (V ,E). For a hedge e ∈ E,

we recall that r(e) is the number of nodes incident to the edges in e and define

δe :=

(
n−r(e)
k−1

)(
n
k−1

) . (4.15)

As per the convention established in the preliminaries, we emphasize that δe = 0 if n−r(e) <
k − 1. Our contraction algorithm will pick a hedge e with probability proportional to δe,

contract it, update the values of δe based on the new number of nodes and r(e) for every

e ∈ E and repeat until the number of nodes is small. When the number of nodes is at most

a constant, we do a brute-force search. We emphasize that our brute-force search outputs

all minimum hedge k-cut-sets in the hedgegraph with constant number of nodes. We do this

for the purposes of convenience in the correctness analysis.

We note that a hedge e is present in every hedge k-cut-set of G if and only if |V (G/e)| < k.

We recall that |V (G/e)| = n − r(e) + s(e). Hence, if a hedge e is present in every hedge

k-cut-set, then n − r(e) + 1 ≤ n − r(e) + s(e) < k and consequently, δe = 0. Thus, our

algorithm will never contract hedges that are present in every hedge k-cut-set. The algorithm

is described in Figure 4.1.

We now analyze the correctness probability of the contraction algorithm. The following

lemma shows a lower bound on the number of hedges in G as a function of the minimum

hedge k-cut-set value.

Lemma 4.2. Let G = (V ,E) be a hedgegraph with m := |E| and λ being the minimum

hedge k-cut-set value. Then,

m− λ ≥
∑
e∈E

δe. (4.16)

Proof. We will prove the lemma by exhibiting an upper bound on λ by the probabilistic

method. Let W be a subset of k− 1 nodes chosen uniformly at random among all subset of

77

Hedge-k-Cut(G)

Input: Hedgegraph G = (V ,E) with n := |V | and span s

1. Initialize a list of hedge k-cut-set candidates with E as an initial candidate.

2. Repeat:

(a) If n ≤ 2(k − 1)(s + 1), then compute all minimum hedge k-cut-sets in G by a
brute-force search, add them to the list of candidates and go to Step 3.

(b) For every e ∈ E such that δe = 0 and |V (G/e)| ≥ k:

i. compute all minimum hedge k-cut-sets in G/e by a brute-force search and
add them to the list of candidates.

(c) If
∑

e∈E δe = 0 go to Step 3.

(d) Choose a hedge e in G with probability proportional to δe.

(e) Contract and update: G← G/e, n← |V (G)| and update δe for every hedge e in
the contracted graph G.

3. Output all hedge k-cut-sets with minimum value among the candidates.

Figure 4.1: Contraction algorithm for constant span hedgegraphs.

nodes of size k − 1. Now consider the k-partition of the node set given by P := {{v}|v ∈
W} ∪ {V \ W}. We claim that the expected value of the hedge k-cut-set given by P is

m−
∑

e∈E δe and hence λ ≤ m−
∑

e∈E δe.

We now prove the claim. Let e be a hedge in G. The probability that e does not cross P
is
(
n−r(e)
k−1

)
/
(
n
k−1

)
= δe. Thus, the probability that e contributes to the hedge k-cut-set P is

1− δe. The claim follows by linearity of expectation.

We need the following combinatorial statement.

Lemma 4.3. Suppose n > 2(k − 1)(s+ 1). Then, for every hedge e with r(e) ∈ {2, . . . ,n−
k + 1}, we have

δe

(
n− r(e) + s(e)

(k − 1)(s+ 1)

)−1

≥
(

n

(k − 1)(s+ 1)

)−1

. (4.17)

Proof. If n− r(e) + s(e) < (k− 1)(s+ 1), then
(
n−r(e)+s(e)
(k−1)(s+1)

)−1
= 1 using the convention fixed

78

at the beginning of Section 4.2. Since r(e) ≤ n− k + 1, we have
(
n−r(e)
k−1

)
≥ 1. Thus,

δe =

(
n− r(e)
k − 1

)(
n

k − 1

)−1

(4.18)

≥
(

n

k − 1

)−1

(4.19)

≥
(

n

(k − 1)(s+ 1)

)−1

(4.20)

since n > 2(k − 1)(s+ 1) and s ≥ 1.

For the rest of the proof, we will assume that n − r(e) + s(e) ≥ (k − 1)(s + 1). We now

note that the binomial in the LHS of the lemma is well-defined and non-zero. For notational

convenience, let t = (k − 1)(s+ 1). Then we need to show that

δe

(
n− r(e) + s(e)

t

)−1

≥
(
n

t

)−1

. (4.21)

We distinguish two cases based on whether s+ 1 ≤ r(e) or r(e) ≤ s.

Case 1: Suppose s+ 1 ≤ r(e). We recall that s ≥ 1. Since s(e) ≤ s, we have

δe

(
n− r(e) + s(e)

t

)−1

≥ δe

(
n− r(e) + s

t

)−1

.

Let x = r(e). Then it suffices to show that(
n− x
k − 1

)(
n

k − 1

)−1(
n− x+ s

t

)−1

≥
(
n

t

)−1

. (4.22)

Consider the LHS of (4.22) as a function of x. There exists a constant Cn,k,s (that depends

on n, k and s) using which the LHS can be written as

LHS(x) = Cn,k,s
(n− x)!(n− x+ s− t)!

(n− x− k + 1)!(n− x+ s)!
(4.23)

= Cn,k,s
(n− x+ s− t)!

(n− x− k + 1)!
∏s

i=1(n− x+ i)
(4.24)

= Cn,k,s

(
1∏t−s−1

i=k−1(n− x− i)

)(
1∏s

i=1(n− x+ i)

)
. (4.25)

The last equation follows since t = (k − 1)(s+ 1), and hence k − 1 ≤ t− s. From the above

79

expression, we have that LHS(x) is an increasing function of x. Thus we only need to show

inequality (4.22) when x is the minimum value in the domain of interest, i.e., x = r(e) = s+1.

Hence, it suffices to show that(
n− s− 1

k − 1

)(
n

k − 1

)−1(
n− 1

t

)−1(
n

t

)
≥ 1. (4.26)

To show the above, we write out the LHS of (4.26):

LHS of (4.26) =
(n− s− 1)!(n− k + 1)!

(n− s− k)!(n− 1)!(n− t)
(4.27)

=

∏s+k−1
i=s+1 (n− i)

(n− t)
∏k−2

i=1 (n− i)
. (4.28)

In order to show that LHS of (4.26) ≥ 1, we need to show that the denominator is no greater

than the numerator. Taking negative logarithm of both the denominator and the numerator,

we only need to show that

s+k−1∑
i=s+1

(− log(n− i)) ≤
k−2∑
i=1

(− log(n− i))− log(n− t). (4.29)

We recall that t = (k−1)(s+ 1). We know that
∑s+k−1

i=s+1 (n− i) = (2n−2s−k)(k−1)/2 =

(n − t) +
∑k−2

i=1 (n − i) and
∑s+j

i=s+1(n − i) <
∑j

i=1(n − i) ∀j ∈ [k − 2]. Since negative loga-

rithm is a convex function, inequality (4.29) follows by applying Lemma 4.1 using the choice

` := k−1, yi := n−s−i, xi := n−i for every i ∈ [k−2] and yk−1 := n−s−(k−1),xk−1 := n−t.

Case 2: Suppose r(e) ≤ s. By the assumptions of the lemma, we have r(e) ≥ 2 and hence

s ≥ 2. We recall that r(e) is the number of nodes incident to the edges in e while s(e) is

the number of connected components in the subgraph induced by the edges in e. Hence,

r(e)− s(e) ≥ r(e)/2. Consequently, we have

δe

(
n− r(e) + s(e)

t

)−1

≥ δe

(
n− r(e)/2

t

)−1

.

Let x = r(e). Then it suffices to show that(
n− x
k − 1

)(
n

k − 1

)−1(
n− x/2

t

)−1

≥
(
n

t

)−1

. (4.30)

Proceeding similarly to the analysis in Case 1 above, we can show that the LHS of (4.30) is

80

an increasing function of x. Then we only need to show inequality (4.30) for x = 2, i.e., we

need to show that (
n− 2

k − 1

)(
n

k − 1

)−1(
n− 1

t

)−1(
n

t

)
≥ 1. (4.31)

Inequality (4.31) is a special case of inequality (4.26), which we have already proven in Case

1. This concludes our proof for the combinatorial statement.

We now show a lower bound on the success probability of the algorithm.

Theorem 4.5. For an n-node input hedgegraph with span s, the contraction algorithm given

in Figure 4.1 outputs any fixed minimum hedge k-cut-set with probability at least(
n

(k − 1)(s+ 1)

)−1

.

Moreover, for constant k and s, it can be implemented to run in time O(nmp), where m is

the number of hedges in the input hedgegraph.

Proof. For a hedgegraph H, let O(H) denote the set of min-k-cut-sets in H. For C ∈ O(H),

let q(H,C) denote the probability that the algorithm executed on H outputs C. Let Gn,s be

the set of n-node hedgegraphs with span at most s. We define

qn := inf
H∈Gn,s

min
C∈O(H)

q(H,C). (4.32)

We will prove by induction on n that qn ≥
(

n
(k−1)(s+1)

)−1
. Let G = (V ,E) ∈ Gn,s with

C ∈ O(G). Let us define m := |E| and λ := |C|.
We first note that the algorithm will terminate in finite time. This is because either the

number of nodes is strictly decreasing in each iteration and the algorithm reaches the base

case in Step 2(a) or the condition is met in Step 2(c). If C is in the list of candidates, it will

be part of the output because it is a minimum hedge k-cut-set. Therefore we just have to

prove that C is in the list of candidates.

To base the induction, we consider n ≤ 2(k − 1)(s+ 1). For such n, we have q(G,C) = 1

since the algorithm solves such instances exactly by a brute-force search and returns all

minimum hedge k-cut-sets, hence qn = 1.

We now show the induction step. We begin by addressing two easy cases: (i) Suppose

δe = 0 for some hedge e ∈ E \ C. Since e ∈ E \ C, we know that contracting e does not

destroy C, so C is still a minimum hedge k-cut-set in G/e. We also know that |V (G/e)| ≥ k.

This is because contracting any hedge f with |V (G/f)| < k would destroy all hedge k-cut-

81

sets but C survives the contraction of e. Since δe = 0 and |V (G/e)| ≥ k, Step 2(b)i will add

all minimum hedge k-cut-sets in G/e including C to the list of candidates, so q(G,C) = 1.

(ii) Suppose C = E. Then, all hedges are present in every hedge k-cut-set. Therefore,

δe = 0 for every hedge e ∈ E. So the algorithm executes only one iteration of Step 2 and will

go to Step 3 after executing Step 2(c). Since all hedges are present in every hedge k-cut-set,

contracting any hedge e ∈ E will destroy all hedge k-cut-sets. Consequently, Step 2(b) of

the algorithm will not find any candidate and Step 3 will correctly return all hedges in G

since the initialized list contains E as a candidate. Hence, q(G,C) = 1.

Thus, we may assume that (i) n > 2(k − 1)(s + 1), (ii) δe > 0 for all e ∈ E \ C, and (iii)

E \ C 6= ∅. In particular, (ii) and (iii) imply that
∑

e∈E δe > 0. Let pe := δe/
∑

e∈E δe for

every e ∈ E. We note that (pe)e∈E is a probability distribution supported on the hedges

because pe ≥ 0 ∀e ∈ E and
∑

e∈E pe = 1. The algorithm picks a hedge e to contract

according to the distribution defined by (pe)e∈E. We note that since
∑

e∈E δe > 0, we have

δe > 0 for some e ∈ E and thus, the algorithm will contract some hedge.

The algorithm executed on G outputs C if the hedge e that it contracts is not in C and

the algorithm executed on the contracted hedgegraph G/e outputs C. Let e ∈ E \ C. The

hedgegraph G/e has n − r(e) + s(e) < n nodes and moreover, the span of G/e is at most

s and hence G/e ∈ Gn−r(e)+s(e),s. Furthermore, the k-cut-set C is still a minimum hedge

k-cut-set in G/e and hence C ∈ O(G/e). Thus, q(G/e,C) ≥ qn−r(e)+s(e) by definition.

Thus, we have

q(G,C) ≥
∑
e∈E\C

pe · q(G/e,C) (4.33)

≥
∑
e∈E\C

pe · qn−r(e)+s(e) (4.34)

=
1∑
e∈E δe

∑
e∈E\C

δe · qn−r(e)+s(e) (since pe = δe/
∑
e∈E

δe) (4.35)

≥ 1∑
e∈E δe

∑
e∈E\C

δe ·
(
n− r(e) + s(e)

(k − 1)(s+ 1)

)−1

. (by induction hypothesis) (4.36)

For every e ∈ E \C, we know that δe > 0, which implies that n− r(e) ≥ k− 1 by definition

of δe. Moreover, by the assumption on G, we have that n > 2(k − 1)(s + 1). Hence, by

Lemma 4.3,

for every hedge e ∈ E \ C, we have

δe ·
(
n− r(e) + s(e)

(k − 1)(s+ 1)

)−1

≥
(

n

(k − 1)(s+ 1)

)−1

. (4.37)

82

Substituting this in the previously derived lower bound for q(G,C), we have

q(G,C) ≥ 1∑
e∈E δe

∑
e∈E\C

(
n

(k − 1)(s+ 1)

)−1

(4.38)

=
m− λ∑
e∈E δe

(
n

(k − 1)(s+ 1)

)−1

(since |C| = λ and |E| = m) (4.39)

≥
(

n

(k − 1)(s+ 1)

)−1

. (by Lemma 4.2) (4.40)

In all cases, we have shown that q(G,C) ≥
(

n
(k−1)(s+1)

)−1
for an arbitrary G ∈ Gn,s and an

arbitrary C ∈ O(G). Therefore, we have

qn = inf
H∈Gn,s

min
C∈O(H)

q(H,C) ≥
(

n

(k − 1)(s+ 1)

)−1

. (4.41)

This concludes our proof of the correctness probability by induction.

We now analyze the running time of the contraction algorithm. A hedge contraction

operation takes O(p) time: To contract a hedge e, we construct a hash table of the nodes

in the hedge, which also stores the component containing each node. The second step is

contraction. We process every hedge and mark a node if it needs to be contracted. If so, we

also mark which node it contracts to. Marking nodes takes O(1) time per node encountered

in a hedge as we only need to check if it is in the hash table that we constructed. Therefore,

marking nodes in all hedges takes O(p) time in total. Then, we replace all the marked nodes

with the new nodes and update the hedges accordingly in O(p) time. Hence the contraction

operation can be implemented to run in O(p) time.

We analyze the run-time for one iteration of Step 2. The brute-force operation in Step 2(a)

takes O(pk2(k−1)(s+1)) time. The for-loop in Step 2(b) applies at most O(m) contractions.

Each contraction takes O(p) time and each brute-force search for minimum hedge-k-cut-set

takes O(pkk+s) time. Hence Step 2(b) runs in time O(mp). Step 2(c) verifies if
∑

e∈E δe = 0

which can be done in O(m) time. Step 2(d) picks a random hedge given a probability

distribution on the hedges which again takes O(m) time. Step 2(e) contracts and updates

the δe values. Contraction takes O(p) time. In order to update the δe values, we can

precompute
(
a
k−1

)
for all k − 1 ≤ a ≤ n in O(n(k − 1)) arithmetic operations. After every

contraction, we can thus update δe for each e in constant time using the table. Now, we

can compute
∑

e∈E δe in O(|E|) = O(m) time. With these values, the probability pe for all

e ∈ E can be found in O(m) time. Hence, the total run-time of one iteration of Step 2 is

O(mp).

83

Since the number of nodes strictly decreases after each contraction, the total number of

iterations of Step 2 is at most n. By the above discussion, the contraction algorithm can be

implemented to run in O(nmp) time. We mention that the bottleneck of the algorithm is

Step 2(b)i. If Step 2(b)i is never executed, then the running time is O(np).

Theorem 4.1 follows from Theorem 4.5 by executing the contraction algorithm log n(
n

(k−1)(s+1)

)
times and outputting a hedge k-cut-set with the minimum value among all exe-

cutions.

The contraction algorithm can be adapted to solve the min-cost variant, where each hedge

e has capacity w(e), and the goal is to find a subset of hedges of minimum total capacity

to remove so that the underlying graph has at least k connected components. In this case,

we set δe := w(e)
(
n−r(e)
k−1

)
/
(
n
k−1

)
and run the same contraction algorithm as above. The

correctness and run-time arguments are analogous to the one in Theorem 4.5 and we avoid

repeating in the interests of brevity.

4.3.3 Contraction Algorithm for Hypergraph-k-Cut

We next focus on the special case of Hypergraph-k-Cut. We restate and prove Theorem

4.2.

Theorem 4.2. There exists a randomized polynomial time algorithm to solve Hypergraph-

k-Cut that runs in time O(pn2k−1 log n) and succeeds with probability at least 1− 1/n.

Proof. We will show that a hypergraph can be transformed to a hedgegraph with span

one without changing the value of any k-cut-set. By Theorem 4.1, such a transformation

immediately gives a randomized polynomial time algorithm to solve Hypergraph-k-Cut

that runs in time O(nmpn2(k−1) log n) and succeeds with probability at least 1 − 1/n. We

discuss the run-time improvement after showing the transformation.

Let G = (V ,E) be an input hypergraph. We construct a hedgegraph H = (V ,E ′), where

E ′ is obtained as follows: for every hyperedge e ∈ E, fix an arbitrary node v ∈ e and

introduce a hedge e′ ∈ E ′ consisting of edges {v,u} for all u ∈ e− {v}. Thus, the subgraph

induced by the edges in e′, i.e., G[e′], is a star centered at v that is adjacent to all the nodes

in e and hence has span one. We emphasize that the constructed hedges are disjoint, i.e., if

an edge appears in ` constructed hedges, then the underlying graph has ` copies of the edge

with each copy being present in one of the hedges.

We now show that the value of any k-cut-set is preserved by this transformation. Let

{V1, . . . ,Vk} denote a partitioning of the node set V into k non-empty parts. We claim

84

that a hyperedge e crosses the partition {V1, . . . ,Vk} in the hypergraph G if and only if the

corresponding hedge e′ crosses the partition {V1, . . . ,Vk} in the hedgegraph H. Suppose

e′ crosses the partition {V1, . . . ,Vk} in the hedgegraph H. Consider the center node v of

e′. Without loss of generality, let v ∈ V1. Then there exists a node u ∈ e′ ∩ Vj for some

j ∈ [k] \ {1}. Now u, v ∈ e, and hence e crosses {V1, . . . ,Vk} in the hypergraph G. On the

other hand, suppose e crosses the partition {V1, . . . ,Vk} in the hypergraph G. Consider the

center node v of the star corresponding to e′. Without loss of generality, let v ∈ V1 and

suppose e intersects V1 and Vj for some j ∈ [k] \ {1}. Let u ∈ Vj ∩ e. Then v ∈ V1 while

u ∈ Vj and hence e′ crosses {V1, . . . ,Vk} in the hedgegraph H.

We now prove the improved run-time bound. We obtain the improvement by showing that

the algorithm will never execute Step 2(b)i for hedgegraphs with span one. For every hedge

e with δe = 0, we have that n− r(e) < k− 1 and consequently |V (G/e)| = n− r(e) + s(e) =

n − r(e) + 1 < k. Hence, we would have no hedges e in the hedgegraph with δe = 0 and

|V (G/e)| ≥ k.

This observation shows that the running time is O(np) as analyzed in the proof of Theorem

4.5. The theorem now follows by running the contraction algorithm
(

n
2(k−1)

)
log n times and

returning the hedge k-cut-set with minimum value among all executions.

We now bound the number of optimal cut-sets. We restate and prove Corollary 4.1.

Corollary 4.1. The number of distinct minimum k-cut-sets in an n-node hypergraph is

O(n2(k−1)).

Proof. We recall that a k-cut-set is a set C of hyperedges in a hypergraph G whose removal

results in a hypergraph with at least k connected components. Let S1, . . . ,S` be the min-k-

cut-sets in a given n-node hypergraph. Let Ei be the event that Si survives the contraction

algorithm until there are at most 4(k−1) nodes. Then, by Theorem 4.5 (by considering s = 1

for hypergraphs), we have that Pr(Ei) ≥
(

n
2(k−1)

)−1
. The number of possible min-k-cut-sets

for Hypergraph-k-Cut in a hypergraph with 4(k− 1) nodes is at most k4(k−1) and hence,∑`
i=1 Pr(Ei) ≤ k4(k−1). Hence, ` ≤ k4(k−1)

(
n

2(k−1)

)
= O(n2(k−1)).

4.4 RPTAS FOR HEDGE-K-CUT

In this section, we provide a randomized polynomial time approximation scheme and a

quasi-polynomial time exact algorithm for Hedge-k-Cut for constant k. We generalize the

contraction approach for Hedge-2-Cut given by Ghaffari, Karger and Panigrahi [3]. Their

contraction algorithm distinguishes large and small hedgegraphs based on the existence of

85

small, medium, and large hedges. We generalize these definitions for the purposes of Hedge-

k-Cut and handle the cases appropriately.

Let G = (V ,E) be a hedgegraph with n nodes. We define a hedge e to be small if r(e) <

n/(4(k−1)), moderate if n/(4(k−1)) ≤ r(e) < n/(2(k−1)), and large if r(e) ≥ n/(2(k−1)).

We define a hedgegraph to be large if it contains at least one large hedge, and to be small

otherwise. We use the algorithm in Figure 4.2.

Input: Hedgegraph G = (V ,E)

Contract(G):

1. If G has k nodes, then return F = E.

2. Else if the graph underlying G has at least k components, then return F = ∅.

3. Else, remove all hedges e such that n− r(e) + s(e) ≤ k− 1 from G and add them to F .

4. If G is a small hedgegraph, then contract a hedge e chosen uniformly at random from
E. Let the resulting hedgegraph be H and return F ∪Contract(H).

5. Else, let L be the set of large and moderate hedges in G. Perform a branching step:
go to one of the two following branches with equal probability.

(a) Remove all large and moderate hedges from G to obtain a hedgegraph H1 and
return F ∪ L ∪Contract(H1).

(b) Contract a hedge e chosen uniformly at random from L to obtain a hedgegraph
H2 and return F ∪Contract(H2).

Figure 4.2: Contraction algorithm for arbitrary span hedgegraphs

The following lemma bounds the number of branching steps performed by the algorithm.

Lemma 4.4. The total number of branching steps in one execution of the contraction algo-

rithm on an n-node hedgegraph is at most

log 8(k−1)
8(k−1)−1

n. (4.42)

Proof. We prove this lemma by induction on n. Let G = (V ,E) be an n-node hedgegraph.

We consider n = k as base case. For such n, the algorithm terminates without a branching

step, so the statement is true.

We now show the induction step. If the graph underlying G has at least k components,

then the algorithm terminates without a branching step, so the statement is again true.

86

If G is small, then the inductive hypothesis directly implies the statement since no branch-

ing step is performed.

If G is large, then we go to either branch (a) or branch (b). In branch (a), the algorithm

recurses on a small hedgegraph H1. Since the number of nodes spanned by each hedge never

increases during the execution of the algorithm, the hedgegraph H1 will not become a large

hedgegraph, and hence will not encounter another branching, until its number of nodes is

halved. Then by the inductive hypothesis, the total number of branchings in the algorithm

is at most

1 + log 8(k−1)
8(k−1)−1

(n
2

)
≤ log 8(k−1)

8(k−1)−1

n. (4.43)

We have proved the induction step for branch (a). Next we will show the induction step for

branch (b). In branch (b), let e be the contracted hedge. Then the algorithm recurses on

the hedgegraph H2 which has n− r(e) + s(e) nodes. Since each connected component of any

hedge has at least two nodes, we have s(e) ≤ r(e)/2, and thus n− r(e) + s(e) ≤ n− r(e)/2.

Since e is either a large or a moderate hedge, we have that r(e) ≥ n/(4(k − 1)), and hence

the hedgegraph H2 has at most n− r(e)/2 ≤ n · (1−1/(8(k−1))) = n · (8(k−1)−1)/(8(k−
1)) nodes. Therefore, by the inductive hypothesis, the total number of branchings in the

algorithm is at most

1 + log 8(k−1)
8(k−1)−1

(
8(k − 1)− 1

8(k − 1)
· n
)

= log 8(k−1)
8(k−1)−1

n. (4.44)

We next show that the algorithm always outputs a feasible solution and that it can be

implemented to run in polynomial-time.

Lemma 4.5. The contraction algorithm given in Figure 4.2 always outputs a hedge k-cut-set.

Moreover, the algorithm can be implemented to run in time O(pn).

Proof. We first note that any hedge e with n− r(e) + s(e) ≤ k − 1 must be in every hedge

k-cut-set. By deleting such hedges from the input hedgegraph and adding them to the

output set F , the algorithm ensures that it never contracts hedges such that the resulting

hedgegraph has at most k−1 components (nodes). So, the algorithm always outputs a hedge

k-cut-set.

Next, we show that the contraction algorithm can be implemented to run in O(pn) time.

In the contraction algorithm, finding the set of hedges e with n − r(e) + s(e) ≤ k − 1 and

finding the set of large and moderate hedges can each be done in O(m) time. Similar to

the proof of Theorem 4.5, a contraction step can be implemented to run in O(p) time by

87

processing hedges one by one to mark contracted nodes and replacing them with a new node.

Since in one execution of the contraction algorithm there can be at most n contractions and

O(log n) branching steps by Lemma 4.4, the contraction algorithm can be implemented to

run in O(pn) time.

Next, we state a few helper lemmas which will be used to lower bound the success prob-

ability of the algorithm in returning a (1 + ε)-approximate minimum hedge k-cut-set. We

recall that for a hedge e, the number of nodes incident to the edges in e is denoted by r(e).

Lemma 4.6. Let G = (V ,E) be a hedgegraph with minimum hedge k-cut-set value λ. Let

W be a subset of k − 1 nodes and let E(W) := {e ∈ E : |V (e) ∩W | ≥ 1}. Then

|E(W)| ≥ λ. (4.45)

Proof. Let P = {{v}|v ∈ W}∪{V \W} be the k-partitioning of the node set induced by W .

Let E(P) be the set of hedges that cross P . Since each hedge contains at least two nodes,

every hedge crossing P must contain at least one node in W . Therefore, E(P) ⊆ E(W), so

|E(W)| ≥ |E(P)|. Since E(P) is a hedge k-cut-set and λ is the minimum hedge k-cut-set

value, we have |E(P)| ≥ λ and hence, |E(W)| ≥ λ.

Lemma 4.7. Let G = (V ,E) be an n-node hedgegraph with minimum hedge k-cut-set value

λ. Then, ∑
e∈E

r(e) ≥ nλ

k − 1
. (4.46)

Proof. Let U denote the set of all subsets of nodes of size k − 1. Then |U| =
(
n
k−1

)
. For a

subset W of k − 1 nodes, let E(W) := {e ∈ E : |V (e) ∩W | ≥ 1}. For a node v, we use

deg(v) to denote the number of hedges in E which have edges incident to v.

To prove this lemma, we observe that
∑

W∈U
∑

v∈W deg(v) =
(
n−1
k−2

)∑
v∈V deg(v). Indeed,

for each v ∈ V , the term deg(v) appears in the LHS whenever v ∈ W . There are
(
n−1
k−2

)
sets

88

W in U that contain v, so the observation follows. Therefore,∑
e∈E

r(e) =
∑
v∈V

deg(v) (4.47)

=

(
n− 1

k − 2

)−1 ∑
W∈U

∑
v∈W

deg(v) (by the above observation) (4.48)

=

(
n− 1

k − 2

)−1 ∑
W∈U

∑
e∈E

|V (e) ∩W | (4.49)

≥
(
n− 1

k − 2

)−1 ∑
W∈U

∑
e∈E,|V (e)∩W |≥1

1 (4.50)

≥
(
n− 1

k − 2

)−1 ∑
W∈U

|E(W)| (by definition of E(W)) (4.51)

≥
(
n− 1

k − 2

)−1 ∑
W∈U

λ (by Lemma 4.6) (4.52)

=

(
n− 1

k − 2

)−1(
n

k − 1

)
λ (4.53)

=
nλ

k − 1
. (4.54)

Lemma 4.8. If G = (V ,E) is an n-node small hedgegraph with C being a minimum hedge

k-cut-set in G with value λ, then

(i)
∑

e∈E\C r(e) ≥ nλ/(2(k − 1)) and

(ii) m ≥ 2λ.

Proof. Since C contains λ hedges, and each hedge e ∈ E has r(e) ≤ n/(2(k−1)), we have that∑
e∈C r(e) ≤ nλ/2(k−1). Hence, by Lemma 4.7, we have that

∑
e∈E\C r(e) ≥ nλ/(2(k−1)).

Moreover,
∑

e∈E r(e) ≤ m(n/2(k−1)) since every hedge e has r(e) ≤ n/(2(k−1)). Again,

by Lemma 4.7, we have that m ≥ 2λ.

Lemma 4.9. For every x ∈ (0, 1/2) and c ≥ 4, we have (1− x) · (1− x/c)−3c/2 ≥ 1.

Proof. Let f(x) := (1− x) · (1− x/c)−3c/2. Then

f ′(x) =
(

1− x

c

)− 3c
2 ·
(

3c(1− x)

2(c− x)
− 1

)
.

89

Since the first factor (1 − x/c)−3c/2 > 0 for all x ∈ (0, 1/2), c ≥ 4, then the sign of f ′(x)

depends on the sign of 3c(1 − x)/(2(c − x)) − 1. If we solve f ′(x) = 0 for x, we have

x = c/(3c − 2). Since c ≥ 4, 2/c < 1, so c/(3c − 2) = 1/(3 − 2/c) ≤ 1/2. Then c/(3c − 2)

divides the interval (0, 1/2) into two pieces and we look at the sign of f ′(x) in these two

pieces separately. When 0 < x < c/(3c− 2),

3c(1− x)

2(c− x)
− 1 =

c− x(3c− 2)

2(c− x)
> 0.

When x > c/(3c− 2),
c− x(3c− 2)

2(c− x)
< 0.

Therefore, we know f ′(x) ≥ 0 for x ∈ (0, c/(3c− 2)] and f ′(x) < 0 for x ∈ (c/(3c− 2), 1/2).

Since f(0) = 1, f(x) ≥ 1 for x ∈ (0, c/(3c − 2)]. Now we only need to show that f(x) ≥ 1

for x ∈ (c/(3c − 2), 1/2). Since f ′(x) < 0 for x ∈ (c/(3c − 2), 1/2), we only need to show

that f(x) ≥ 1 when x = 1/2. When x = 1/2, f(x) = 1/2 · (1 − 1/(2c))−3c/2, which is an

increasing function of c. If c = 4, 1/2 · (1 − 1/(2c))−3c/2 = 1/2 · (7/8)−6 > 1. Therefore,

1/2 · (1− 1/(2c))−3c/2 > 1 for c ≥ 4, so f(x) > 1 when x = 1/2.

We now lower bound the success probability of the algorithm.

Lemma 4.10. For an n-node input hedgegraph, the contraction algorithm given in Figure

4.2 outputs a (1 + ε)-approximate minimum hedge k-cut-set with probability n−O(log(1/ε)).

Proof. Let H(n, `) be the family of hedgegraphs on n nodes for which the contraction algo-

rithm will always terminate using at most ` branchings. We say that the algorithm succeeds

on an input hedgegraph H if it outputs a (1 + ε)-approximate minimum hedge k-cut-set of

H. Let q(H) denote the probability that the algorithm succeeds on H. We define

qn,` := inf
H∈H(n,`)

q(H). (4.55)

For notational simplicity, let γ := ε/(1 + ε). We will prove by induction on n that

qn,` ≥ n−6(k−1) ·
(γ

2

)`
∀ n ≥ k. (4.56)

Let G ∈ H(n, `), with node set V = [n] and hedge set E. Let m := |E|. Let us fix a

minimum hedge k-cut-set C of G and suppose that its value is λ.

90

To base the induction, we consider n = k. Then, G has only one hedge k-cut-set and the

algorithm returns it. So q(G) = 1 and hence qn,` = 1.

We next show the induction step. If the graph underlying G has at least k components,

then, the empty set is the only minimum hedge k-cut-set and the algorithm returns it.

Hence, q(G) = 1. Thus, we may assume that n > k and the graph underlying G has fewer

than k components. We distinguish three cases and handle them differently.

1. Suppose G is small. The algorithm succeeds if it contracts a hedge e that is not in C

and the algorithm succeeds on the resulting hedgegraph G/e which has n− r(e) + s(e)

nodes. Hence, q(G) ≥ 1/m ·
∑

e∈E\C q(G/e). We note that G/e ∈ H(n− r(e) + s(e), `)

and that n− r(e) + s(e) ≤ n− r(e)/2 for any hedge e. Therefore,

q(G) ≥ 1

m

∑
e∈E\C

q(G/e) (4.57)

≥ 1

m

∑
e∈E\C

qn−r(e)+s(e),` (by definition of qn,l) (4.58)

≥ 1

m

∑
e∈E\C

(n− r(e) + s(e))−6(k−1) ·
(γ

2

)`
(by inductive hypothesis) (4.59)

≥ 1

m

∑
e∈E\C

(
n− r(e)

2

)−6(k−1)

·
(γ

2

)`
(4.60)

(by n− r(e) + s(e) ≤ n− r(e)/2) (4.61)

=
m− λ
m

(γ
2

)` 1

m− λ
∑
e∈E\C

(
n− r(e)

2

)−6(k−1)

. (4.62)

Since k ≥ 2, and n − r(e)/2 ≥ 1 for all hedges e, the function f(r(e)) := (n −
r(e)/2)−6(k−1) is convex as a function of r(e) for every hedge e ∈ E. By Jensen’s

inequality, we obtain

1

m− λ
∑
e∈E\C

(
n− r(e)

2

)−6(k−1)

≥

(
n−

∑
e∈E\C r(e)

2(m− λ)

)−6(k−1)

. (4.63)

91

Therefore, we have

q(G) ≥ m− λ
m

·
(γ

2

)`
·

(
n−

∑
e∈E\C r(e)

2(m− λ)

)−6(k−1)

(4.64)

≥ m− λ
m

·
(γ

2

)`
·
(
n− nλ/(2(k − 1))

2m

)−6(k−1)

(by Lemma 4.8) (4.65)

= (1− λ

m
)
(γ

2

)`
n−6(k−1)

(
1− λ

4(k − 1)m

)−6(k−1)

(4.66)

=
(γ

2

)`
n−6(k−1) · (1− x)

(
1− x

4(k − 1)

)−6(k−1)

. (4.67)

The last equality follows by setting x := λ/m. We have x ∈ (0, 1/2) since m ≥ 2λ

by Lemma 4.8. We recall that we would like to prove that q(G) ≥ n−6(k−1) · (γ/2)`,

so we only need to prove that (1 − x) (1− x/(4(k − 1)))−6(k−1) ≥ 1 for x ∈ (0, 1/2).

Let c = 4(k − 1), then (1− x) (1− x/(4(k − 1)))−6(k−1) = (1− x)(1− x/c)−3c/2. Since

k ≥ 2, we have c ≥ 4. Therefore, by Lemma 4.9, we have (1− x)(1− x/c)−3c/2 ≥ 1 for

x ∈ (0, 1/2). This concludes our proof that q(G) ≥ n−6(k−1) · (γ/2)` in case 1.

2. Suppose G is large and |L\C| ≥ γ · |L|. The algorithm succeeds if it goes to branch (b),

contracts a hedge e ∈ L \ C, and succeeds on the resulting graph H2 = G/e. By the

condition that |L\C| ≥ γ · |L|, the probability of picking a hedge e ∈ L \C to contract

is at least γ. Hence, q(G) ≥ 1/2 · γ · q(H2). The algorithm contracts either a moderate

or a large hedge e for which r(e) ≥ n/(4(k − 1)) and H2 has n − r(e) + s(e) nodes

where n− r(e) + s(e) ≤ n− r(e)/2 ≤ n− 1. We also note that H2 ∈ H(|V (H2)|, `− 1).

Therefore,

q(G) ≥ 1

2
· γ · q(H2) (4.68)

≥ 1

2
· γ · q|V (H2)|,`−1 (by definition of qn,l) (4.69)

≥ 1

2
· γ · (|V (H2)|)−6(k−1) ·

(γ
2

)`−1

(by inductive hypothesis) (4.70)

≥ 1

2
· γ · n−6(k−1)

(γ
2

)`−1

(4.71)

= n−6(k−1) ·
(γ

2

)`
. (4.72)

3. Suppose G is large and |L\C| < γ · |L|. Since |L\C| < γ · |L|, we have that |L ∩ C| =
|L| − |L \ C| > (1 − γ) · |L|. We will show that the algorithm succeeds if it goes to

92

branch (a), and succeeds on the resulting graph H1 = G− L.

Suppose the algorithm follows branch (a). The value of a minimum hedge k-cut-set in

H1 is at most |C − L| = |C| − |L ∩ C| < |C| − (1 − γ)|L|. If the algorithm returns a

(1 + ε)-approximate minimum hedge k-cut-set of H1, then the algorithm would return

a set of size at most (1 + ε)(|C| − |L|(1 − γ)) = |C|(1 + ε) − |L|. Consequently, the

algorithm returns a hedge k-cut-set of size at most (|C|(1 + ε)− |L|) + |L| = |C|(1 + ε)

for G. This shows that if the algorithm returns a (1 + ε)-approximate minimum hedge

k-cut-set in the hedgegraph H1 obtained in branch (a), then the algorithm returns a

(1+ε)-approximate minimum hedge k-cut-set in the hedgegraph G. Also, by definition,

H1 ∈ H(n, `− 1). Therefore,

q(G) ≥ 1

2
· q(H1) ≥ 1

2
· qn,`−1. (4.73)

We will now prove that q(G) ≥ n−6(k−1) · (γ/2)` by induction on `. The following claim

shows the base case of the statement, i.e., for ` = 0:

Claim 4.4.1. q(G) ≥ n−6(k−1) for all n ≥ k and G ∈ H(n, 0).

Proof. We prove by induction on n. For the base case where n = k, we have q(G) =

1 ≥ n−6(k−1) for all G ∈ H(n, 0). For the inductive step, consider G ∈ H(n, 0) to be a

hedgegraph on n > k nodes and m hedges with a fixed minimum hedge k-cut-set C in

G. We note that G is small since G ∈ H(n, 0), therefore we are in case 1. Hence, we

have

q(G) ≥ n−6(k−1) ·
(γ

2

)`
= n−6(k−1). (4.74)

by the same proof as that of case 1.

By Claim 4.4.1, we have the base case q(G) ≥ n−6(k−1) for all G ∈ H(n, 0). For the

induction step, we use the lower bound and the inductive hypothesis to obtain

q(G) ≥ 1

2
· qn,`−1 ≥

1

2
·
(γ

2

)`−1

· n−6(k−1) ≥
(γ

2

)`
· n−6(k−1). (4.75)

In all cases, we have shown that q(G) ≥ (γ/2)` · n−6(k−1) for an arbitrary G ∈ H(n, `).

Therefore, for all n ≥ k, we have

qn,` = inf
H∈H(n,`)

q(H) ≥ n−6(k−1) ·
(γ

2

)`
. (4.76)

93

We know that γ < 1. Substituting the upper bound on ` from Lemma 4.4, we obtain that

qn,` ≥ n−6(k−1)
(γ

2

)`
(4.77)

≥ n−6(k−1)
(γ

2

)log 8(k−1)
8(k−1)−1

n

. (4.78)

If ε ≥ 1, then γ ≥ 1/2, so qn,` is at least inverse polynomial in n. If ε < 1, then γ =

ε/(1 + ε) > ε/2. So the success probability is at least

n−6(k−1)
(ε

4

)log 8(k−1)
8(k−1)−1

n

= n−O(log 1
ε
).

Theorem 4.3 follows from Lemmas 4.10 and 4.5 by executing the contraction algorithm

nO(log 1/ε) log n times and returning a hedge k-cut-set with the minimum value among all exe-

cutions. Next, in order to prove Theorem 4.4, we bound the probability that the contraction

algorithm returns any fixed optimum solution.

Lemma 4.11. For an n-node input hedgegraph, the contraction algorithm given in Figure

4.2 outputs any fixed minimum hedge k-cut-set with value λ with probability n−O(k+log λ).

Proof. For a hedgegraph H, let O(H) denote the set of min-k-cut-sets in H. Let H(n, `)

be the family of hedgegraphs on n nodes for which the contraction algorithm will always

terminate using at most ` branchings. Let µ(H,C) denote the probability that the algorithm

returns C on H. We define

µn,` := inf
H∈H(n,`)

min
C∈O(H)

µ(H,C). (4.79)

We will prove by induction on n that

µn,` ≥ n−6(k−1) ·
(

1

2(1 + λ)

)`
∀ n ≥ k. (4.80)

Let G ∈ H(n, `), with node set V = [n] and hedge set E. Let m := |E|. Let us fix a minimum

hedge k-cut-set C of G and suppose that its value is λ. Arguments identical to that in the

proof of Lemma 4.10 address the base case of n = k and when the graph underlying G has

at least k components. So, we may again assume that G has fewer than k components. We

again distinguish three cases.

94

1. Suppose G is small. The arguments for this case are identical to that of the first case

in the proof of Lemma 4.10. We avoid repeating in the interests of brevity.

2. Suppose G is large and |L \C| ≥ 1. The algorithm returns C on G if it goes to branch

(b), contracts a hedge e ∈ L\C, and returns C on the resulting graph H2 = G/e. The

probability of picking a hedge e ∈ L \ C to contract is |L \ C|/|L|. Since |L \ C| ≥ 1

and moreover |L ∩ C| ≤ |C| = λ, we have |L \ C|/|L| ≥ 1/(1 + λ). The algorithm

contracts either a moderate or a large hedge e for which r(e) ≥ n/(4(k − 1)) and H2

has n− r(e) + s(e) nodes where n− r(e) + s(e) ≤ n− r(e)/2. Hence, H2 has at most

n− r(e)/2 ≤ n− 1 nodes. We also note that H2 ∈ H(|V (H2)|, `− 1) and if the hedge

e that is contracted to obtain H2 is not in C, then C ∈ O(H2). Therefore,

µ(G,C) ≥ 1

2
· 1

(1 + λ)
· µ(H2,C) (4.81)

≥ 1

2(1 + λ)
· µ|V (H2)|,`−1 (by definition of µn,l) (4.82)

≥ (|V (H2)|)−6(k−1) ·
(

1

2(1 + λ)

)`
(by inductive hypothesis) (4.83)

≥ n−6(k−1) ·
(

1

2(1 + λ)

)`
(4.84)

3. Suppose G is large and L ⊆ C. In this case, the algorithm returns C on G if it goes

to branch (a) and returns C − L on H1 = G− L. We note that H1 ∈ H(n, `− 1) and

C \ L ∈ O(H1). Therefore,

µ(G,C) ≥ 1

2
· µ(H1,C \ L) ≥ 1

2
· µn,`−1. (4.85)

By induction on `, we may now show that µ(G,C) ≥ n−6(k−1) · (1/2(1 + λ))`. The

rest of the proof is identical to that of case 3 of the proof of Lemma 4.10, so we avoid

repeating it.

Therefore, for all n ≥ k, we have

µn,` ≥ n−6(k−1) ·
(

1

2(1 + λ)

)`
. (4.86)

Substituting the upper bound on ` from Lemma 4.4 gives

µn,` ≥ n−6(k−1) ·
(

1

2(1 + λ)

)log 8(k−1)
8(k−1)−1

n

= n−O(k+log λ). (4.87)

95

Lemma 4.11 leads to Theorem 4.4 similar to the proof of Corollary 4.1 from Lemma

4.5. Lemmas 4.11 and 4.5 also lead to the following corollary by executing the contraction

algorithm nO(log λ) log n times and returning a hedge k-cut-set with the minimum value among

all executions (the value λ can be found by a binary search).

Corollary 4.2. There exists a randomized algorithm to solve Hedge-k-Cut that runs in

time pnO(log λ) log n, where λ is the value of a minimum hedge k-cut-set in the input hedge-

graph.

4.5 OPEN PROBLEMS

We gave a quasipolynomial time algorithm for Hedge-k-Cut. Can we solve Hedge-k-

Cut in polynomial time? It is unknown even for k = 2. We described a polynomial time

algorithm for Hypergraph-k-Cut. Can the running time be improved? For example,

the technique in Karger-Stein might be applicable [29]. Finally, our algorithm for Hyper-

graph-k-Cut is randomized. Is there a deterministic polynomial time algorithm?

96

Chapter 5: Global vs. Fixed-terminal cuts

The dichotomy in complexity between global and fixed-terminal k-cut problems for graphs

is well-known since the early 90s. For concreteness, we recall from chapter 4 the Graph-

k-Cut problem and the Graph-k-Way-Cut problem for k ≥ 3. While the global variant,

namely Graph-k-Cut, admits an efficient algorithm [27, 29], the fixed-terminal variant,

namely Graph-k-Way-Cut, is NP-Hard [38].

In this chapter, we further investigate this dichotomy by studying different kinds of cut

problems.

5.1 ST -SEP-K-CUT

We consider the following variant of Graph-k-Cut. It is an intermediary between

Graph-k-Cut and Graph-k-Way-Cut.

st-Sep-k-Cut: Given a graph G = (V ,E) with two specified nodes s, t ∈ V , find a smallest

subset of edges to remove so that the resulting graph has at least k connected components

with s and t being in different components.

The complexity of st-Sep-k-Cut for constant k was posed as an open problem by Queyranne

[34]. We resolve this open problem by showing that st-Sep-k-Cut is solvable in polynomial-

time for every constant k.

Theorem 5.1. For every constant k, there is a polynomial-time algorithm to solve st-Sep-

k-Cut.

Notations. Let G = (V ,E) be an graph. Let γq(G) denote the value of an optimum

q-Cut in G, i.e.,

γq(G) := min{c({V1, . . . ,Vq}) : Vi 6= ∅ ∀ i ∈ [q],

Vi ∩ Vj = ∅ ∀ i, j ∈ [q],∪qi=1Vi = V }.

Proof of Theorem 5.1. Let γ∗ denote the optimum value of st-Sep-k-Cut in G = (V ,E)

and let H denote the graph obtained from G by adding an edge of infinite capacity between

s and t. The algorithm is based on the following observation (we recommend the reader to

consider k = 3 for ease of understanding):

97

Proposition 5.1. Let {V1, . . . ,Vk} be a partition of V corresponding to an optimal solution

of st-Sep-k-Cut, where s is in Vk−1 and t is in Vk. Then c({V1, . . . ,Vk−2,Vk−1 ∪ Vk}) ≤
2γk−1(H).

Proof. Let W1, . . . ,Wk−1 be a minimum (k − 1)-cut in H. Clearly, s and t are in the same

part, so we may assume that they are in Wk−1. Let U1,U2 be a minimum st-cut in G[Wk−1].

Then {W1, . . . ,Wk−2,U1,U2} gives an st-separating k-cut, showing that

γ∗ ≤ c({W1, . . . ,Wk−2,U1,U2}) = γk−1(H) + λG[Wk−1](s, t). (5.1)

By Menger’s theorem, we have λG(s, t) pairwise edge-disjoint paths P1, . . . ,PλG(s,t) between

s and t in G. Consider one of these paths, say Pi. If all nodes of Pi are from Vk−1 ∪Vk, then

Pi has to use at least one edge from δ(Vk−1,Vk). Otherwise, Pi uses at least two edges from

δ(V1 ∪ · · · ∪ Vk−2). Hence the maximum number of pairwise edge-disjoint paths between s

and t is

λG(s, t) ≤ d(Vk−1,Vk) +
1

2
(c(V1 ∪ · · · ∪ Vk−2)) . (5.2)

Thus, we have

γ∗ = d(Vk−1,Vk) + c(V1 ∪ · · · ∪ Vk−2) +
∑

i<j≤k−2

d(Vi,Vj) (5.3)

≥ λG(s, t) +
1

2

(
c(V1 ∪ · · · ∪ Vk−2) +

∑
i<j≤k−2

d(Vi,Vj)

)
(5.4)

= λG(s, t) +
1

2
c({V1, . . . ,Vk−2,Vk−1 ∪ Vk}) (5.5)

≥ λG[Wk−1](s, t) +
1

2
c({V1, . . . ,Vk−2,Vk−1 ∪ Vk}) (5.6)

that is,

γ∗ ≥ λG[Wk−1](s, t) +
1

2
c({V1, . . . ,Vk−2,Vk−1 ∪ Vk}). (5.7)

By combining (5.1) and (5.7), we get c({V1, . . . ,Vk−2,Vk−1 ∪ Vk}) ≤ 2γk−1(H), proving the

proposition.

Karger and Stein [29] showed that the number of feasible solutions to Graph-k-Cut in

an graph G with value at most 2γk(G) is O(n4k). All these solutions can be enumerated

in polynomial-time for fixed k [29,106,107]. This observation together with Proposition 5.1

gives the algorithm for finding an optimal solution to st-Sep-k-Cut. The algorithm is

summarized in Figure 5.1.

98

Algorithm for st-Sep-k-Cut

Input: graph G = (V ,E) with s, t ∈ V

1. Let H be the graph obtained from G by adding an edge of infinite capacity between
s and t. In H, enumerate all feasible solutions to (k − 1)-Cut—namely the node
partitions {W1, . . . ,Wk−1}—whose cut value c({W1, . . . ,Wk−1}) is at most 2γk−1(H).
Without loss of generality, assume s, t ∈ Wk−1.

2. For each feasible solution to (k− 1)-Cut in H listed in Step 1, find a minimum st-cut
in G[Wk−1], say U1,U2.

3. Among all feasible solutions {W1, . . . ,Wk−1} to (k − 1)-Cut listed in Step 1 and the
corresponding U1,U2 found in Step 2, return the k-cut {W1, . . . ,Wk−2,U1,U2} with
minimum c({W1, . . . ,Wk−2,U1,U2}).

Figure 5.1: Algorithm for st-Sep-k-Cut

The correctness of the algorithm follows from Proposition 5.1: one of the choices enumer-

ated in Step 1 will correspond to the partition (V1, . . . ,Vk−2,Vk−1 ∪ Vk), where (V1, . . . ,Vk)

is the partition corresponding to the optimal solution.

5.2 S-SIZE-K-CUT

Let s = (s1, . . . , sk) be a non-decreasing vector of positive integers. For a graph G, a set

of edges C is s-size k-cut if we can find a k-partition (V1, . . . ,Vk), such that |Vi| ≥ si for

all 1 ≤ i ≤ k, and C are the edges crossing the k-partition. The s-Size-k-Cut problem

asks one to find a s-size k-cut of minimum capacity for an input graph G. We recover

Graph-k-Cut when s is the all 1 vector.

We note that we can also define the fixed-terminal variant, namely s-size k-way-cut. It is

NP-Hard for k ≥ 3, and if k = 2, it reduces to O(ns1+s2−2) maximum flow computations.

Hence there is a gap between the global and the fixed-terminal variants.

We use the greedy tree packing algorithm by Thorup, which was used to solve Graph-k-

Cut. We recall that a k-cut is a set of edges such that after its removal, the graph has at

least k components. We recall that γk(G) is the capacity of the minimum k-cut in G.

Theorem 5.2 ([28]). Let k be a constant and G be a capacitated graph on m edges and n

nodes. There exists a set of Õ(m) spanning trees T , such that for every k-cut F with value

at most γk(G) (i.e. a minimum k-cut), there is a T ∈ T such |F ∩ E(T)| ≤ 2k − 2.

99

A closer observation of the proof shows that [28] actually proves a more general theorem.

Theorem 5.3. Let k be a constant and G be a capacitated graph on m edges and n nodes.

There exists a set of Õ(m) spanning trees T , such that for every set of edges F with value

at most γk(G), there is a T ∈ T such |F ∩E(T)| ≤ 2k− 2. Furthermore, T can be found in

Õ(nm) = Õ(n3) time.

For any t ≤ k, the t-cuts with value at most a min-k-cut can be enumerate in polynomial

time. First, find Õ(m) spanning trees of G′ described in Theorem 5.3. For each tree, remove

all possible choice of 2k − 2 edges, which breaks the tree into components C1, . . . ,C2k−1.

We group the components into t groups and consider the union of each group. This will

be a candidate partition. See Figure 5.2 for the formal algorithm to generate all candidate

t-partitions for input G, t and k.

CandidatePartition(G, t, k):

T ← Õ(m) spanning trees in Theorem 5.3
for each tree T ∈ T

for each set of 2(k − 1) edges F in T
C ← the components of T − F
for each ordered t partition (C1, . . . , Ct) of C

for 1 ≤ i ≤ t
Vi ←

⋃
X∈Ci X

add (V1, . . . ,Vt) as a candidate partition
output all candidate partitions

Figure 5.2: Algorithm for returning all candidate t partitions

In particular, the algorithm in Figure 5.2 takes Õ(n2(k−1)+1) = Õ(n2k−1) time to compute

all candidate partitions. As a consequence, we obtain a faster deterministic algorithm for

s-Size-k-Cut.

Theorem 5.4. Let s = (s1, . . . , sk) and si ≥ si+1 for all i ≤ k− 1. s-Size-k-Cut for graph

G can be solved in O(n2(σ−s1+2)) time, where σ =
∑k

i=1 si and n is the number of nodes of

G.

Proof. Let σ′ = σ − s1. Assume n is at least s1(σ′ + 1), otherwise brute force takes O(1)

time because both σ′ and s1 are constants. We show that the value of the min s-size k-cut is

at most the value of a min-(σ′ + 1)-cut when n ≥ s1(σ′ + 1). Consider any (σ′ + 1)-cut with

node partition V1, . . . ,Vσ′+1, each has size n1, . . . ,nσ′+1 respectively. Assume ni ≥ ni+1. We

will construct a s-size constrained k-cut U1, . . . ,Uk. By pigeonhole principle, |V1| ≥ s1. Let

100

U1 = V1. We consider an arbitrary partition of the remaining σ′ sets into k − 1 partition

classes, such that the ith partition class contain si+1 of the sets. This is feasible since

σ′ =
∑k

i=2 si. Let Ui+1 be the union of the sets in the ith partition class. The resulting

{U1, . . . ,Uk} induces a s-size k-cut that only uses edges in a minimum (σ′ + 1)-cut. Hence

we have shown that the minimum s-size k-cut is bounded above by minimum (σ′ + 1)-cut.

Therefore the optimal partition is returned by CandidatePartition(G, k,σ′ + 1), which

takes running time Õ(n2(σ−s1+1)+1). Given the partition, it takes O(m) time to evaluate the

cut value. Hence the total running time is Õ(n2(σ−s1+1)m) = Õ(n2(σ−s1+2)).

5.3 (S, ∗,T)-LINEAR-3-CUT

A set of edges C is a linear-k-way-cut for an k-tuple of terminals (t1, . . . , tk), if there is

no path from ti to tj for all i < j in G−C. C is a linear-k-cut if it is a linear-k-way-cut for

some k-tuple of terminals. Linear-k-Way-Cut and Linear-k-Cut denote the problem of

finding a minimum linear-k-way-cut and a minimum linear-k-cut. Linear-k-Way-Cut was

studied in approximating multicuts [41]. Linear-k-Way-Cut is NP-Hard for all k ≥ 3.

A
√

2-approximation algorithm exists for the case when k = 3, and it is tight assuming the

Unique Game Conjecture [108]. Linear-k-Way-Cut was introduced by Erbacher et al.

in [36]. They showed that the problem is fixed-parameter tractable when parameterized by

the size of the solution. It is unknown if Linear-k-Cut is tractable.

As a sub-problem in the algorithm for solving BiCut in Theorem 5.6, we need to study

the following problem.

(s, ∗, t)-Linear-3-Cut (abbreviating linear 3-cut): Given a digraph D = (V ,E) and two

specified nodes s, t ∈ V , find a smallest subset of edges to remove so that there exists a node

r with the property that s cannot reach r and t, and r cannot reach t in the resulting graph.

(s, ∗, t)-Linear-3-Cut is a semi-global variant of (s, r, t)-Linear-3-Cut, introduced in

[36], where the input specifies three terminals s, r, t and the goal is to find a smallest subset

of edges whose removal achieves the property above. A simple reduction from 3-way-Cut

shows that (s, r, t)-Linear-3-Cut is NP-Hard. The approximability of (s, r, t)-Linear-

3-Cut was studied by Chekuri and Madan [109]. They showed that the inapproximability

factor coincides with the flow-cut gap of an associated path-blocking linear program assuming

the Unique Games Conjecture. However, the exact approximability factor is still unknown.

On the positive side, there exists a simple combinatorial 2-approximation algorithm for

(s, r, t)-Linear-3-Cut.

A 2-approximation for (s, ∗, t)-Linear-3-Cut can be obtained by iterating over all choices

101

for the terminal r and using the above-mentioned 2-approximation for (s, r, t)-Linear-3-

Cut. However, for the purposes of getting a strictly better than 2-approximation for BiCut,

we need a strictly better than 2-approximation for (s, ∗, t)-Linear-3-Cut. We obtain the

following improved approximation factor:

Theorem 5.5. There exists a polynomial-time 3/2-approximation algorithm for (s, ∗, t)-
Linear-3-Cut.

Remark The 3/2 approximation result was later superseded by [108], since their algorithm

can be used to give a
√

2-approximation algorithm.

We emphasize that we do not know if (s, ∗, t)-Linear-3-Cut is NP-Hard.

In this section, we prove Theorems 5.5. Theorem 5.5 gives a 3/2-approximation for (s, ∗, t)-
Linear-3-Cut and is a necessary component of our proof of Theorem 5.6.

One of our main tools used in the approximation algorithm for BiCut is a 3/2-approximation

algorithm for (s, ∗, t)-Linear-3-Cut. We present this algorithm now. We recall the prob-

lem (s, ∗, t)-Linear-3-Cut: Given a digraph with specified nodes s, t, find a smallest subset

of edges whose removal ensures that the graph contains a node r with the property that s

cannot reach r and t, and r cannot reach t.

Notations. Let V be the node set of a graph. For two nodes s, t ∈ V , a subset X ⊆ V is

an st-set if t ∈ X ⊆ V − s. A family C of subsets of V is a chain if for every pair of sets

A,B ∈ C, we have A ⊆ B or B ⊆ A. We observe that a chain family can have at most |V |
non-empty sets. Two sets A and B are uncomparable if A \B and B \A are non-empty, and

comparable otherwise. A set A is compatible with a chain C if C ∪ {A} is a chain, and it is

incompatible otherwise.

For two sets A,B ⊆ V , let

β(A,B) := |δin(A) ∪ δin(B)|, and (5.8)

σ(A,B) := |δin(A)|+ |δin(B)|. (5.9)

We first rephrase the problem in a convenient way.

Lemma 5.1. (s, ∗, t)-Linear-3-Cut in a digraph D = (V ,E) is equivalent to

min {β(A,B) : t ∈ A (B ⊆ V − {s}} . (5.10)

102

Proof. Let F ⊆ E be an optimal solution for (s, ∗, t)-Linear-3-Cut in D and let

(A,B) := argmin{β(A,B) : t ∈ A (B ⊆ V − s}. (5.11)

Let us fix an arbitrary node r ∈ B−A. Since the deletion of δin(A)∪δin(B) results in a graph

with no directed path from s to r, from r to t and from s to t, the edge set δin(A) ∪ δin(B)

is a feasible solution to (s, r, t)-Linear-3-Cut in D, thus implying that |F | ≤ β(A,B).

On the other hand, F is a feasible solution for (s, r′, t)-Lin-3-Cut in D for some r′ ∈
V −{s, t}. Let A′ be the set of nodes that can reach t in D− F , and R′ be the set of nodes

that can reach r′ in D − F . Then, F ⊇ δin(A′). Moreover, F ⊇ δin(R′ ∪ A′) since R′ ∪ A′

has in-degree 0 in D− F , and s is not in R′ ∪A′ because it cannot reach r′ and t in D− F .

Therefore, taking B′ = R′ ∪ A′ we get F ⊇ δin(A′) ∪ δin(B′).

The above reformulation shows that the optimal solution is given by a chain consisting

of two st-sets. The following lemma shows that we can obtain a 3/2-approximation to the

required chain.

Lemma 5.2. There exists a polynomial-time algorithm that given a digraph D = (V ,E)

with nodes s, t ∈ V returns a pair of st-sets A (B ⊆ V such that

β(A,B) ≤ 3

2
min{β(A,B) : t ∈ A (B ⊆ V − {s}}. (5.12)

Proof. The objective is to find a chain of two st-sets A, B with minimum β(A,B). We can

assume |V | ≥ 4, otherwise we check all possibilities. To obtain an approximation, we build

a chain C of st-sets with the property that, for some value k ∈ Z+,

(i) every set C ∈ C is an st-set with din(C) ≤ k, and

(ii) every st-set T with din(T) strictly less than k is in C.

We use the following procedure to obtain such a chain: We initialize with k being the

minimum st-cut value and C consisting of the sink-side of a single minimum st-cut. In

a general step, we find two st-sets: an st-set Y compatible with the current chain C, i.e.

C ∪ {Y } forming a chain, with minimum din(Y) and an st-set Z not compatible with the

current chain C, i.e. crossing at least one member of C, with minimum din(Z). Note that it

is possible that Y or Z does not exist; the former happens when the chain is maximal, while

the latter happens when C = {{t}} or C = {V − {s}} or C = {{t},V − {s}}. Since |V | ≥ 4,

at least one of Y and Z exist.

103

The required sets Y and Z can be found in polynomial-time as follows: let t ∈ C1 ⊆ . . . ,⊆
Cq ⊆ V − s denote the members of C, and let C0 = {t}, Cq+1 = V − s. (i) Find a minimum

cut Yi /∈ C with Ci ⊆ Yi ⊆ Ci+1 for i = 0, . . . , q, and choose Y to be a set with minimum

cut value among these cuts. (ii) For each i ∈ {1, . . . , q} and for each pair x, y of nodes with

y ∈ Ci ⊆ V − x, find a minimum cut Zi
xy with {t,x} ⊆ Zi

xy ⊆ V − {s, y}, and choose Z

to be a set with minimum cut value among these cuts. Since C is a chain, we have that

q ≤ |V | and hence both sets Y and Z can be found in polynomial-time. If Z does not exist

or din(Y) ≤ din(Z), then we add Y to C, and set k to din(Y); otherwise we set k to din(Z)

and stop.

Proposition 5.2. Let C denote the chain before any general step of the above-mentioned

procedure. Then, for every C ∈ C and for every st-set A that is not in C, we have

din(C) ≤ din(A). (5.13)

Proof. Let A be an st-set that is not in C. Suppose for the sake of contradiction that

din(A) < din(C) for some C ∈ C. Let C ′ denote the chain consisting of those members of C
that were added before C. Since A 6∈ C and C is a set of minimum cut value compatible

with C ′, we have that A should cross at least one member of C ′. Hence, by din(A) < din(C),

the procedure stops before adding C to the chain C ′, a contradiction to C being in C.

Proposition 5.3. The chain C and the value k obtained at the end of the above-mentioned

procedure satisfy (i) and (ii).

Proof. The construction immediately guarantees that every set C ∈ C is an st-set. By

Proposition 5.2 and by construction of C and k, we have that din(C) ≤ k for every C ∈ C
and hence, we have (i).

By construction, C contains all st-sets T with din(T) < k that are compatible with C.
Suppose for the sake of contradiction, we have an st-set T with din(T) < k that is not in C.
Then, the set T should be incompatible with C. We note that the procedure terminates by

setting k to be the minimum cut value din(Z) among Z that are incompatible with C. Hence,

the procedure should have set k to be a value that is at most din(T) and terminated. This

is a contradiction to din(T) < k. Therefore, there does not exist an st-set T with din(T) < k

that is not in C and hence, we have (ii).

By the above, the procedure stops with a chain C containing all st-sets of cut value less

than k, and an st-set Z of cut value exactly k which crosses some member X of C. If the

optimum value of our problem is less than k, then both members of the optimal pair (A,B)

104

belong to the chain C, and we can find them by taking the minimum of β(A′,B′) where

A′ ⊆ B′ with A′,B′ ∈ C.
We can thus assume that the optimum is at least k. Since din(Z) = k and din(X) ≤ k,

the submodularity of the in-degree function implies

din(X ∩ Z) + din(X ∪ Z) ≤ din(Z) + din(X) ≤ 2k. (5.14)

Hence either din(X ∩ Z) ≤ k or din(X ∪ Z) ≤ k. Since

d(X \ Z,X ∩ Z) + d(Z \X,X ∩ Z) ≤ din(X ∩ Z) and (5.15)

d(V \ (X ∪ Z),X \ Z) + d(V \ (X ∪ Z),Z \X) ≤ din(X ∪ Z), (5.16)

at least one of the following four possibilities holds:

1. din(X ∩ Z) ≤ k and d(X \ Z,X ∩ Z) ≤ 1
2
k. Choose A = X ∩ Z, B = X. Then

β(A,B) = d(X \ Z,X ∩ Z) + din(X) ≤ 1
2
k + k = 3

2
k.

2. din(X ∩ Z) ≤ k and d(Z \ X,X ∩ Z) ≤ 1
2
k. Choose A = X ∩ Z, B = Z. Then

β(A,B) = d(Z \X,X ∩ Z) + din(Z) ≤ 1
2
k + k = 3

2
k.

3. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z),X \ Z) ≤ 1
2
k. Choose A = Z, B = X ∪ Z. Then

β(A,B) = din(Z) + d(V \ (X ∪ Z),X \ Z) ≤ k + 1
2
k = 3

2
k.

4. din(X ∪ Z) ≤ k and d(V \ (X ∪ Z),Z \X) ≤ 1
2
k. Choose A = X, B = X ∪ Z. Then

β(A,B) = din(X) + d(V \ (X ∪ Z),Z \X) ≤ k + 1
2
k = 3

2
k.

Thus a pair (A,B) can be obtained by taking the minimum among the four possibilities

above and β(A′,B′) where A′ ⊆ B′ with A′,B′ ∈ C, concluding the proof of the approxi-

mation factor. The algorithm is summarized in Figure 5.3. It remains to ensure that the

algorithm can be implemented to run in polynomial-time. We have already seen that Steps

2(a) and 2(b) can be implemented to run in polynomial-time above. Furthermore, the size of

the chain C is at most |V | and hence, Step 3 can also be implemented to run in polynomial

time.

Theorem 5.5 is a consequence of Lemmas 5.1 and 5.2. The approximation algorithm is

summarized in Figure 5.3.

105

Approximation Algorithm for (s, ∗, t)-Linear-3-Cut

Input: digraph D = (V ,E) with s, t ∈ V . We assume |V | ≥ 4.

1. Let S denote the sink-side of a minimum s → t cut and α denote its value. Initialize
C ← {S} and k ← α.

2. Repeat:

(a) Y ← arg min{din(Y) : Y is a st-set compatible with C}
(b) Z ← arg min{din(Z) : Z is a st-set incompatible with C}
(c) If din(Y) ≤ din(Z), then update C ← C ∪ {Y } and k ← din(Y).

(d) Else, update k ← din(Z), set X to be a set in C that crosses Z and go to Step 3.

3. Let (A,B)← arg min{β(A,B) : A,B ∈ C,A 6= B}.

4. Let (S,T)← arg min{β(X ∩ Z,X), β(X ∩ Z,Z), β(Z,X ∪ Z), β(X,X ∪ Z)}

5. Return arg min{β(A,B), β(S,T)}.

Figure 5.3: Approximation Algorithm for (s, ∗, t)-Linear-3-Cut.

5.4 BICUT

The global minimum cut problem in graphs is a classic interdiction problem that admits

efficient algorithms. We study the following generalization of this problem from graphs to

digraphs:

BiCut: Given a digraph, find a smallest subset of edges whose removal ensures that there

exist two nodes s and t such that s cannot reach t and t cannot reach s.

A natural approach to solving BiCut is by iterating over all pairs of distinct nodes s and

t in the input graph and solving the following fixed-terminal bicut problem:

st-BiCut: Given a digraph with two specified terminal nodes s, t, find a smallest subset of

edges whose removal ensures that s cannot reach t and t cannot reach s.

Clearly, st-BiCut is equivalent to 2-terminal multiway-cut in digraphs (the goal in k-

terminal multiway cut is to remove a smallest subset of edges to ensure that s cannot reach t

and t cannot reach s for every pair {s, t} of the given k terminals). A classic result by Garg,

Vazirani and Yannakakis shows that st-BiCut is NP-Hard [110]. A simple 2-approximation

algorithm is to return the union of a minimum s → t cut and a minimum t → s cut in the

input digraph. The approximability of st-BiCut has seen renewed interest in the last few

106

months culminating in inapproximability results matching the best-known approximability

factor [109, 111]: st-BiCut has no efficient (2 − ε)-approximation for any constant ε > 0

assuming the Unique Games Conjecture [37]. These results suggest that we have a very good

understanding of the complexity and the approximability of the fixed-terminal variant, i.e.,

st-BiCut. In contrast, even the complexity of the global variant, i.e., BiCut, is still an

open problem.

The motivations for studying BiCut are multifold. In several network defense/attack

applications, global cuts and connectivity are more important than connectivity between

fixed pairs of terminals. On the one hand, BiCut is a fundamental global cut problem

with interdiction applications involving digraphs. On the other hand, there is no known

complexity theoretic result for BiCut. The fundamental nature of the problem coupled

with the lack of basic tractability results are compelling reasons to investigate this problem.

In this section, we exhibit a dichotomy in the approximability of BiCut and st-BiCut.

While st-BiCut is inapproximable to a constant factor better than 2 assuming UGC, we

show that BiCut is approximable to a constant factor that is strictly better than 2. The

following is our main result:

Theorem 5.6. There exists a polynomial-time (2−1/448)-approximation algorithm for Bi-

Cut.

We emphasize that the complexity of BiCut is still an open problem.

In this section, we present our approximation algorithm (Theorem 5.6) for BiCut. We

begin with the high-level ideas of the approximation algorithm in Section 5.4.1. The full

algorithm and the proof of its approximation ratio are presented in Section 5.4.2.

We recall the problem BiCut: Given a digraph, find a smallest number of edges in it

whose removal ensures that there exist two distinct nodes s and t such that s cannot reach

t and t cannot reach s. We begin with a reformulation of BiCut that is helpful for the

purposes of designing an algorithm. We recall that two sets A and B are uncomparable if

A \ B 6= ∅ and B \ A 6= ∅. We also recall that for two sets of nodes A and B, the quantity

β(A,B) = |δin(A) ∪ δin(B)|.

Definition 5.1. For a digraph D = (V ,E), let

β := min{β(A,B) : A and B are uncomparable}. (5.17)

The following lemma shows that bicut is equivalent to finding an uncomparable pair of

subsets of nodes A,B with minimum β(A,B).

107

Lemma 5.3. Let D = (V ,E) be a digraph. The minimum number of edges in D whose

removal ensures that there exist two distinct nodes s and t such that s cannot reach t and t

cannot reach s is exactly equal to β.

Proof. We show the inequality in both directions. Suppose β is attained by two sets A,B ⊆
V such thatA andB are uncomparable. Let s ∈ A\B and t ∈ B\A. For F := δin(A)∪δin(B),

we consider the graph D′ := D − F . Since there are no edges entering the set B in D′, the

node s cannot reach the node t in D′. Since there are no edges entering the set A in D′, the

node t cannot reach the node s in D′. Thus, the minimum number of edges whose removal

ensures that there exist two distinct nodes s and t such that s cannot reach t and t cannot

reach s is at most |F | = β. Suppose F is a smallest set of edges of D such that the graph

D′ := D − F has two nodes s and t such that s cannot reach t and t cannot reach s. Let

A be the set of nodes that can reach s in D′ and B be the set of nodes that can reach t

in D′. The sets A and B are uncomparable since s ∈ A \ B and t ∈ B \ A. Moreover,

|δinD′(A) ∪ δinD′(B)| = 0. Thus, we have β ≤ β(A,B) ≤ |F |.

Using the above formulation, and by recalling that σ(A,B) = |δin(A)|+ |δin(B)|, we have

the following natural relaxation of bicut:

Definition 5.2. For a digraph D = (V ,E), let

σ := min{σ(A,B) : A and B are uncomparable}. (5.18)

A pair where the latter value is attained is called a minimum uncomparable cut-pair.

5.4.1 Overview of the Approximation Algorithm

In this section, we sketch the argument for a (2− ε)-approximation for some small enough

ε. We observe that for every pair of subsets of nodes (A,B), we have

β(A,B) = σ(A,B)− d(V \ (A ∪B),A ∩B). (5.19)

Therefore, β(A,B) ≤ σ(A,B) ≤ 2β(A,B) for every pair of subsets of nodes (A,B) and hence

β ≤ σ ≤ 2β. Furthermore, σ can be computed in polynomial-time (see Lemma 5.4), and the

optimal solution is a (2− ε)-approximation for BiCut if σ ≤ (2− ε)β. On the other hand,

if σ > (2− ε)β, then d(V \ (A∪B),A∩B) > (1− ε)β for every minimizer (A,B) of β(A,B),

thus providing a structural handle on optimal solutions. Our algorithm proceeds by making

108

several further attempts at finding pairs (A′,B′) that could give a (2 − ε)-approximation.

Each attempt that is unsuccessful at giving a (2− ε)-approximation implies some structural

property of the optimal solution. These structural properties are together exploited by the

last attempt to succeed.

Let us fix an uncomparable minimizer (A,B) for β(A,B). From (5.19), we note that if

A∩B or V \ (A∪B) is empty, then σ(A,B) = β(A,B) and hence, computing σ would have

found the optimum bicut value already. So, we may assume that A∩B and V \ (A∪B) are

non-empty. In the subsequent attempts, we guess nodes x ∈ A\B, y ∈ B\A, w ∈ V \(A∪B),

and z ∈ A ∩ B. We use the notation X := A \ B, Y := B \ A, W := V \ (A ∪ B), and

Z := A ∩B (see Figure 5.4).

Figure 5.4: The partitioning of the node set in the graph D. Here, (A,B) denotes the
optimum bicut that is fixed.

We now observe that A is the sink-side of a {w, y} → {x, z}-cut while B is the sink-side

of a {w,x} → {y, z}-cut. Our next attempt in the algorithm is to find (X ′,Y ′), where X ′

is the sink-side of the unique inclusionwise minimal minimum {w, y} → {x, z}-cut, and Y ′

is the sink-side of the unique inclusionwise minimal minimum {w,x} → {y, z}-cut. The

hope behind this attempt is that X ′ could recover A and Y ′ could recover B as these are

feasible solutions to the respective problems and thus, they would together help us recover

the optimal solution. Unfortunately, this favorable best-case scenario may not happen. Yet,

owing to the feasibility of A and B for the respective problems, we may conclude that

σ(X ′,Y ′) ≤ σ(A,B) ≤ 2β(A,B) = 2β.

Our subsequent attempts are more complex and proceed by modifying X ′ and Y ′. We

observe that Z is the sink-side of a {w,x, y} → {z}-cut. So, our next attempt in the

algorithm would be to find Z ′ as the sink-side of a minimum {w,x, y} → {z}-cut and expand

X ′ and Y ′ to include Z ′ thereby obtaining an uncomparable pair (A′ = X ′∪Z ′,B′ = Y ′∪Z ′).

109

Our hope is to find a Z ′ so that the resulting β(A′,B′) is small. While finding Z ′, we

prefer not to have many edges of E[X ′] ∪ E[Y ′] in the new bicut (A′,B′). This is because

such edges enter only one among the two sets A′ and B′. (We recall that if we have an

uncomparable pair (A′,B′) with lot of edges from V \ (A′ ∪B′) to A′ ∩B′, then the value of

β(A′,B′) is going to be much less than σ(A′,B′)—e.g., see (5.19)—thus leading to a (2− ε)-
approximation.) So, in order to avoid the edges of E[X ′] ∪ E[Y ′] in the new bicut (A′,B′),

we make such edges more expensive by duplicating them before finding Z ′. Let D1 be the

digraph obtained by duplicating the edges in E[X ′] ∪ E[Y ′], and let Z ′ be the sink-side of

the minimum {w,x, y} → {z}-cut in D1. We then show that the pair (X ′ ∪ Z ′,Y ′ ∪ Z ′) is

a (2− ε)-approximation unless |δinD1
(Z)| > (2− 3ε)β, thus giving us more structural handle

on the optimum solution.

We next make an analogous attempt by shrinking X ′ and Y ′ instead of expanding. Let

D2 be the digraph obtained by duplicating the edges in E[V \X ′] ∪ E[V \ Y ′], and let W ′

be the source-side of the minimum {w} → {x, y, z}-cut in D2. We obtain that the pair

(X ′ \W ′,Y ′ \W ′) is a (2− ε)-approximation unless |δoutD2
(W)| > (2− 3ε)β.

Figure 5.5: The quantities α1, . . . ,α6.

Let α1, . . . ,α6 be the number of edges in each position indicated in Figure 5.5. If the

attempts so far are unsuccessful, then we use the structural properties derived so far to

arrive at the following:

1. All but O(εβ) edges in δin(X ′)∪ δin(Y ′)∪ δout(W)∪ δin(Z) are as positioned in Figure

5.5.

2. The quantities α1,α3,α5 are within O(εβ) of each other (see (5.87), (5.88), (5.89)) and

110

so are α2,α4,α6.

3. Furthermore, (1−O(ε))β = α3 + α4 ≤ β (see Proposition 5.7).

Without loss of generality, we may assume that α3 ≥ α4. Hence, by conclusion (3) from

above, we have that α3 ≥ β/2−O(ε)β.

Our final attempt in the algorithm to obtain a (2 − ε)-approximate bicut is to expand

Y ′ by including some nodes from X ′ \ Y ′ and to shrink X ′ by excluding some nodes from

X ′ \ Y ′. We now explain the motivation behind this choice of expanding and shrinking.

Consider S := Y ′ ∪ (X ′ ∩ Z), which is obtained by expanding Y ′ by including some nodes

from X ′ \ Y ′ and T := X ′ \ (X ′ ∩ (W \ Y ′)), which is obtained by shrinking X ′ by excluding

some nodes from X ′ \ Y ′ (see Figure 5.6). By definition, (S,T) is an uncomparable pair.

We will now see that the bicut value of (S,T) is much smaller than 2β. Using conclusions

(1) and (2) from above, we obtain that

β(S,T) = |δin(Y ′ ∪ (X ′ ∩ Z)) ∪ δin(X ′ \ (X ′ ∩ (W \ Y ′)))|

= |δin(Y ′)| − α5 + α3 + |δin(X ′)| − α1 +O(ε)β (5.20)

= σ(X ′,Y ′)− α1 − α5 + α3 +O(ε)β (5.21)

≤ 2β − α3 +O(ε)β (5.22)

≤ 3

2
β +O(ε)β. (5.23)

In the above, equation (5.20) is by using conclusion (1), equation (5.21) is by definition of

σ, inequality (5.22) is by using conclusion (2) and σ(X ′,Y ′) ≤ σ(A,B) ≤ 2β, and inequality

(5.23) is because α3 ≥ β/2−O(ε)β.

Although (S,T) is a good approximation to the optimal bicut, we cannot obtain the sets

S and T without the knowledge of W and Z (which, in turn, depend on the optimal bicut

(A,B)). Instead, our algorithmic attempt is to expand Y ′ by including some nodes from

X ′\Y ′ and to shrink X ′ by excluding some nodes from X ′\Y ′. In other words, our candidate

is a pair (B′,Y ′ ∪ A′) for some X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′ (we need the condition A′ (B′

because B′ and Y ′∪A′ should be uncomparable) with minimum β(B′,Y ′∪A′) value. When

choosing A′ and B′, we ignore the edges whose contribution to the objective do not depend

on A′ and B′. Let H be the digraph obtained by removing the edges in E[Y ′ ∪ (V \ X ′)].
Our aim is to minimize |δinH (B′)∪ δinH (Y ′ ∪A′)|. However, using conclusion (1), we note that

this quantity differs from |δinH (A′) ∪ δinH (B′)| by O(εβ), so we may instead aim to minimize

the latter.

The crucial observation now is that this latter minimization problem is an instance of

111

Figure 5.6: The motivation behind the last attempt.

(s, ∗, t)-Linear-3-Cut. While we do not know how to solve (s, ∗, t)-Linear-3-Cut op-

timally, we can obtain a 3/2-approximation in polynomial-time by Theorem 5.5. By the

reformulation of (s, ∗, t)-Linear-3-Cut in Lemma 5.1, we get a pair of subsets (A′,B′)

for which X ′ ∩ Y ′ ⊆ A′ (B′ ⊆ X ′ and which is a 3/2-approximation. In particular,

|δinH (A′)∪ δinH (B′)| ≤ (3/2)|δinH ((X ′∩ (Z ∪Y ′))∪ δinH (X ′ \ (W \Y ′))| ≤ 3(α3 +O(ε)β)/2. Using

this and proceeding similar to the calculations shown above to obtain the bound on β(S,T)

(i.e., 5.20, 5.21, 5.22, and 5.23), we derive that β(B′,Y ′ ∪ A′) ≤ (7/4 + O(ε))β, concluding

the proof.

5.4.2 Approximation Algorithm and Analysis

In this section we prove Theorem 5.6 by giving a polynomial-time (2− ε)-approximation

algorithm for BiCut for a constant ε > 0. We will describe the algorithm, analyze its

approximation factor to show that it is (2 − ε) for some constant ε > 0 and compute the

value of ε at the end of the analysis.

We begin by showing that a natural relaxation of β, namely σ, can be solved.

Lemma 5.4. For a digraph D = (V ,E), there exists a polynomial-time algorithm to find a

minimum uncomparable cut-pair.

Proof. For fixed nodes a and b, there is an efficient algorithm to find A and B such that

a ∈ A \B and b ∈ B \A and σ(A,B) is minimized. Indeed, this is precisely finding the sink

side of a min a → b cut and that of a min b → a cut. Trying all distinct pairs of nodes a

112

and b and taking the minimum gives the desired result.

We need the following definition.

Definition 5.3. If c is a capacity function on a digraph D, then dinc (U) =
∑

e∈δin(U) c(e) is

the sum of the capacities of incoming edges of U . Similarly, doutc (U) =
∑

e∈δout(U) c(e).

The rest of the section is devoted to presenting the approximation algorithm and its

analysis (i.e., proving Theorem 5.6).

Proof of Theorem 5.6. The algorithm is summarized in Figure 5.7. We first note that the

algorithm indeed returns the bicut value of an uncomparable pair. The run-time of the

algorithm being polynomial follows from Lemmas 5.2 and 5.4. In the rest of the proof,

we analyze the approximation factor. We will show that the algorithm achieves a (2 − ε)-
approximation factor and compute ε at the end.

We note that both values µ1,µ2 computed by the algorithm are bicut values of uncom-

parable pairs of sets. Indeed, by definition, it is clear that µ1 is the bicut value of an

uncomparable pair of sets. The value µ′2 computed in Step 3(xii) is also the bicut value of an

uncomparable pair of sets: A pair (P ,Q) ∈ {(X ′,Y ′), (X ′ ∪Z ′,Y ′ ∪Z ′), (X ′ \W ′,Y ′ \W ′)}
is uncomparable since the node x ∈ P \Q while the node y ∈ Q \P . The pair (B1,Y ′ ∪A1)

is uncomparable since the node y ∈ (Y ′ ∪A1) \B1 while the set B1 \ (Y ′ ∪A1) is non-empty

since A′ (B′.

To analyze the approximation factor, let us fix a minimizer (A,B) for BiCut in the

input graph D = (V ,E), i.e. fix an uncomparable pair (A,B) such that β(A,B) = β. Let

X := A \ B, Y := B \ A, Z := A ∩ B, and W := V \ (A ∪ B) (see Figure 5.4). With this

notation, we have

β = d(W ∪ Y ,X) + d(W ∪X,Y) + din(Z) = d(Y ,X ∪Z) + d(X,Y ∪Z) + dout(W). (5.24)

We may assume that both Z and W are non-empty, otherwise β(A,B) = σ(A,B) and

consequently, the algorithm finds the optimum since it returns a value µ ≤ µ1 ≤ σ(A,B) =

β(A,B). Let ε > 0 be a constant whose value will be determined later.

113

Approximation Algorithm for BiCut

Input: digraph D = (V ,E)

1. Compute (S,T) ← arg min{σ(S,T) : S and T are uncomparable} using Lemma 5.4
and set µ1 ← β(S,T)

2. Initialize µ2 ←∞

3. For each ordered tuple of nodes (x, y, z,w)

(i) X ′ ← sink-side of the unique inclusionwise minimal minimum {w, y} → {x, z}-
cut

(ii) Y ′ ← sink-side of the unique inclusionwise minimal minimum {w,x} → {y, z}-cut

(iii) E1 ← E[X ′] ∪ E[Y ′]

(iv) E2 ← E[V \X ′] ∪ E[V \ Y ′]
(v) D1 ← D with the arcs in E1 duplicated

(vi) D2 ← D with the arcs in E2 duplicated

(vii) Z ′ ← sink-side of minimum {w,x, y} → {z}-cut in D1

(viii) W ′ ← source-side of minimum {w} → {x, y, z}-cut in D2

(ix) H ← contract X ′ ∩ Y ′ to z′, contract V \X ′ to w′, remove all w′z′ arcs

(x) In H, find w′z′-sets A′ (B′ such that β(A′,B′) is at most
(3/2) min{β(A,B) : z′ ∈ A (B ⊆ V − {w′}} using Lemma 5.2

(xi) A1 ← (A′ \ {z′}) ∪ (X ′ ∩ Y ′) and B1 ← (B′ \ {z′}) ∪ (X ′ ∩ Y ′)
(xii) µ′2 ← min{β(X ′,Y ′), β(X ′ ∪ Z ′,Y ′ ∪ Z ′), β(X ′ \W ′,Y ′ \W ′), β(B1,Y ′ ∪ A1)}.

(xiii) If µ′2 < µ2, update µ2 ← µ′2

4. Return µ← min{µ1,µ2}.

Figure 5.7: Approximation Algorithm for BiCut

Lemma 5.5. If one of the following is true, then σ ≤ (2− ε)β:

(i) d(W ,Z) ≤ (1− ε)β.

(ii) For every z ∈ Z, there exists a subset U of nodes containing z but not all nodes of Z

with din(U) < (1− ε)β.

(iii) For every w ∈ W , there exists a subset U of nodes not containing w but intersecting

W with din(U) < (1− ε)β.

114

Proof. (i) If d(W ,Z) ≤ (1− ε)β, then σ(A,B) = β(A,B) + d(W ,Z) ≤ (2− ε)β. The pair

(A,B) is uncomparable, and hence σ ≤ σ(A,B) ≤ (2− ε)β.

(ii) Suppose condition (ii) holds. This in particular, implies that |Z| ≥ 2. Since condition

(ii) holds, there exist sets M with in-degree less than (1 − ε)β such that Z \M 6= ∅.
Among all such sets, consider a set M with inclusionwise maximal intersection with Z.

Let z ∈ Z \M . There exists a set U containing z but not Z with din(U) < (1 − ε)β.

Because of the maximal intersection of M with Z, we have that M 6⊆ U . Hence M

and U are uncomparable and therefore σ ≤ σ(M ,U) ≤ (2− 2ε)β.

(iii) An argument similar to the proof of (ii) shows that σ ≤ (2 − 2ε)β if condition (iii)

holds.

Our aim is to show that the algorithm in Figure 5.7 achieves a (2 − ε)-approximation.

Therefore, we may assume for the rest of the proof that

σ > (2− ε)β (5.25)

since otherwise, the algorithm returns µ ≤ µ1 = σ ≤ (2− ε)β. By Lemma 5.5, we have

d(W ,Z) ≥ (1− ε)β. (5.26)

We also have nodes z ∈ Z and w ∈ W violating conditions (ii) and (iii) of Lemma 5.5

respectively. Let us fix such nodes, i.e.,

(a) if |Z| = 1, then fix z ∈ Z, else if |Z| ≥ 2, then fix z ∈ Z such that din(U) ≥ (1 − ε)β
for all subsets U of nodes containing z but not all nodes of Z, and

(b) if |W | = 1, then fix w ∈ W , else if |W | ≥ 2, then fix w ∈ W such that din(U) ≥ (1−ε)β
for all subsets U of nodes not containing w but intersecting W .

Also let us fix an arbitrary choice of x ∈ X, y ∈ Y (since A and B are uncomparable, we

have that X and Y are non-empty and hence such an x and y can be chosen). Henceforth,

we will consider the iteration of Step 3 in the algorithm for this choice of x, y, z,w.

We note that (X ′,Y ′) form an uncomparable pair since x ∈ X ′ \ Y ′ and y ∈ Y ′ \ X ′. If

β(X ′,Y ′) ≤ (2 − ε)β, then the algorithm returns µ ≤ µ2 ≤ (2 − ε)β. Therefore, we may

assume that

β(X ′,Y ′) ≥ (2− ε)β. (5.27)

115

Also, we have din(X ′) ≤ din(X ∪ Z) because X ′ is the sink-side of a min {w, y} → {x, z}
cut. Since din(X ∪ Z) = din(A) ≤ β, we have that

din(X ′) ≤ β. (5.28)

Similarly,

din(Y ′) ≤ din(Y ∪ Z) ≤ β. (5.29)

Consequently,

σ(X ′,Y ′) ≤ din(X ′) + din(Y ′) ≤ 2β. (5.30)

We consider four cases depending on the relations between W and X ′ ∪ Y ′, and between

Z and X ′ ∩ Y ′.

Case 0. Suppose W ∩ (X ′∪Y ′) = ∅ and Z ⊆ X ′∩Y ′ (see Figure 5.8). In this case δin(X ′)

and δin(Y ′) both contain all edges counted in d(W ,Z). Hence β(X ′,Y ′) ≤ σ(X ′,Y ′) −
d(W ,Z) ≤ (1 + ε)β. The second inequality here is because σ(X ′,Y ′) ≤ 2β by (5.30) and

d(W ,Z) ≥ (1 − ε)β by (5.26). This shows that (X ′,Y ′) is a (1 + ε)-approximation. This

completes the proof for this case.

Figure 5.8: The case where W ∩ (X ′ ∪ Y ′) = ∅ and Z ⊆ X ′ ∩ Y ′.

For the remaining three cases, we will use the next lemma. Let c be the capacity function

obtained by increasing the capacity of each edge in E1 to 2, and let c be the capacity

function obtained by increasing the capacity of each edge in E2 to 2. Recall that Z ′ is the

sink-side of a minimum {w,x, y} → {z}-cut in D1, and W ′ is the source-side of minimum

{w} → {x, y, z}-cut in D2.

116

Lemma 5.6. If din(X ′ ∩ Z ′) ≥ (1 − ε)β and din(Y ′ ∩ Z ′) ≥ (1 − ε)β, then β(X ′ ∪ Z ′,Y ′ ∪
Z ′) ≤ 2εβ + dinc (Z). If dout(W ′ \ X ′) ≥ (1 − ε)β and dout(W ′ \ Y ′) ≥ (1 − ε)β, then

β(X ′ \W ′,Y ′ \W ′) ≤ 2εβ + doutc (W ′).

Proof. If din(X ′ ∩ Z ′) ≥ (1− ε)β, then din(X ′)− din(X ′ ∩ Z ′) ≤ εβ. So

din(X ′ ∪ Z ′) = din(Z ′) + din(X ′)− din(X ′ ∩ Z ′)

− d(X ′ \ Z ′,Z ′ \X ′)− d(Z ′ \X ′,X ′ \ Z ′) (5.31)

≤ din(Z ′) + εβ − d(X ′ \ Z ′,Z ′ \X ′)− d(Z ′ \X ′,X ′ \ Z ′).

Hence, we have

din(X ′ ∪ Z ′) ≤ din(Z ′) + εβ − d(X ′ \ Z ′,Z ′ \X ′). (5.32)

Similarly,

din(Y ′ ∪ Z ′) ≤ din(Z ′) + εβ − d(Y ′ \ Z ′,Z ′ \ Y ′). (5.33)

We need the following proposition.

Proposition 5.4.

β(X ′ ∪ Z ′,Y ′ ∪ Z ′) ≤ σ(X ′ ∪ Z ′,Y ′ ∪ Z ′) + dinc (Z ′)− 2din(Z ′)

+ d(X ′ \ Z ′,Z ′ \X ′) + d(Y ′ \ Z ′,Z ′ \ Y ′). (5.34)

Proof. By counting the edges entering Z ′, we have

1. dinc (Z ′) = din(Z ′) + |δin(Z ′) ∩ E1|.

2. din(Z ′) = d(V \ (X ′ ∪Y ′ ∪Z ′),Z ′) + |δin(Z ′)∩E1|+ d(X ′ \Z ′,Z ′ \X ′) + d(Y ′ \Z ′,Z ′ \
Y ′)− d((X ′ ∩ Y ′) \ Z ′,Z ′ \ (X ′ ∪ Y ′)).

The first equation can be rewritten as

dinc (Z ′)− 2din(Z ′) = −din(Z ′) + |δin(Z ′) ∩ E1|. (5.35)

Using this and the second equation, we get

dinc (Z ′)− 2din(Z ′) + d(X ′ \ Z ′,Z ′ \X ′) + d(Y ′ \ Z ′,Z ′ \ Y ′) (5.36)

= −d(V \ (X ′ ∪ Y ′ ∪ Z ′),Z ′) + d((X ′ ∩ Y ′) \ Z ′,Z ′ \ (X ′ ∪ Y ′)). (5.37)

117

Thus, the desired inequality (5.34) simplifies to

β(X ′ ∪ Z ′,Y ′ ∪ Z ′) ≤ σ(X ′ ∪ Z ′,Y ′ ∪ Z ′)− d(V \ (X ′ ∪ Y ′ ∪ Z ′),Z ′) (5.38)

+ d((X ′ ∩ Y ′) \ Z ′,Z ′ \ (X ′ ∪ Y ′)). (5.39)

To prove this inequality, we observe that the edges counted by d(V \ (X ′ ∪ Y ′ ∪ Z ′),Z ′) are

counted twice in σ(X ′ ∪ Z ′,Y ′ ∪ Z ′). Hence we have the desired relation (5.34).

Using (5.34), (5.33) and (5.32) we get

β(X ′ ∪ Z ′,Y ′ ∪ Z ′) ≤ din(X ′ ∪ Z ′) + din(Y ′ ∪ Z ′) + dinc (Z ′)− 2din(Z ′) (5.40)

+ d(X ′ \ Z ′,Z ′ \X ′) + d(Y ′ \ Z ′,Z ′ \ Y ′) (5.41)

≤ din(Z ′) + εβ + din(Z ′) + εβ + dinc (Z ′)− 2din(Z ′) (5.42)

= 2εβ + dinc (Z ′) (5.43)

≤ 2εβ + dinc (Z).

The last inequality above is because Z is a feasible solution for the minimization problem

that obtains Z ′ and hence dinc (Z ′) ≤ dinc (Z). This completes the proof of the first part of the

lemma. The second part follows by a symmetric argument.

We are now ready to prove the three remaining cases.

Case 1. Suppose W ∩ (X ′ ∪ Y ′) = ∅ and Z 6⊆ X ′ ∩ Y ′. Without loss of generality, let

Z 6⊆ X ′. This implies that |Z| ≥ 2. The set X ′ ∩ Z ′ contains z but not the whole Z, hence

din(X ′ ∩ Z ′) ≥ (1− ε)β by (a).

We first consider the subcase where din(Y ′∩Z ′) < (1−ε)β. By the choice of the node z and

(a), this means that Z ⊆ Y ′∩Z ′. In this case Y ′∩Z ′ crosses X ′, because X ′ does not contain

all nodes in Z, and Y ′ ∩Z ′ does not contain x. Thus (X ′,Y ′ ∩Z ′) is an uncomparable pair.

Now we observe that σ(X ′,Y ′∩Z ′) = din(X ′) +din(Y ′∩Z ′) ≤ (2− ε)β. Thus, σ ≤ (2− ε)β,

a contradiction to (5.25).

Next we consider the other subcase where din(Y ′ ∩ Z ′) ≥ (1− ε)β. Then, by Lemma 5.6,

we get

β(X ′ ∪ Z ′,Y ′ ∪ Z ′) ≤ 2εβ + dinc (Z). (5.44)

We are in the case where (X ′ ∪ Y ′) ∩ W = ∅, so dinc (Z) ≤ din(Z) + d(X,Z) + d(Y ,Z).

We now note that din(Z) + d(X,Z) + d(Y ,Z) = 2din(Z) − d(W ,Z) ≤ 2β − (1 − ε)β =

(1 + ε)β since d(W ,Z) ≥ (1− ε)β and din(Z) ≤ β which follows from (5.24). Hence we have

118

β(X ′ ∪ Z ′,Y ′ ∪ Z ′) ≤ (1 + 3ε)β. Since (X ′ ∪ Z ′,Y ′ ∪ Z ′) is an uncomparable pair, we have

that µ2 ≤ (1 + 3ε)β.

Case 2. SupposeW∩(X ′∪Y ′) 6= ∅ and Z ⊆ X ′∩Y ′. This is similar to Case 1 by symmetry.

The uncomparable pair of sets that are of interest in this case are (X ′ \W ′,Y ′ \W ′).

Case 3. Suppose W ∩ (X ′ ∪ Y ′) 6= ∅ and Z 6⊆ X ′ ∩ Y ′. Consequently, we have that

|Z|, |W | ≥ 2 and hence by (a) and (b), we have that din(U) ≥ (1− ε)β for all subsets U of

nodes containing z but not all nodes of Z and for all subsets U of nodes not containing w

but intersecting W . For the rest of the proof, we may also assume that

µ2 > (2− ε)β (5.45)

for otherwise, the algorithm returns µ ≤ µ2 ≤ (2− ε)β and we are done. With this, we have

the following proposition.

Proposition 5.5.

dinc (Z) ≥ (2− 3ε)β, and (5.46)

doutc (W) ≥ (2− 3ε)β. (5.47)

Proof. We know that Z 6⊆ X ′ ∩ Y ′. Without loss of generality, suppose Z 6⊆ X ′. The set

X ′∩Z ′ contains z but not the whole Z, hence din(X ′∩Z ′) ≥ (1−ε)β. By the same argument

as in the first subcase of Case 1 (first paragraph), we may assume that din(Y ′∩Z ′) ≥ (1−ε)β
(otherwise, σ ≤ (2 − ε)β, a contradiction to (5.25)). The inequality β(X ′ ∪ Z ′,Y ′ ∪ Z ′) ≤
2εβ + dinc (Z) holds using Lemma 5.6. If dinc (Z) ≤ (2 − 3ε)β, then these imply β(X ′ ∪
Z ′,Y ′ ∪ Z ′) ≤ (2 − ε)β. Since (X ′ ∪ Z ′,Y ′ ∪ Z ′) is an uncomparable pair, we would thus

have µ2 ≤ (2 − ε)β, a contradiction to (5.45). Similarly, if doutc (W) ≤ (2 − 3ε)β, then we

obtain µ2 ≤ β(X ′ \W ′,Y ′ \W ′) ≤ (2 − ε)β, a contradiction to (5.45). Thus, we have the

conclusion.

Let us define the following quantities (see Figure 5.5):

1. α1 := d(W \ (X ′ ∪ Y ′),W ∩ (X ′ \ Y ′)),

2. α2 := d(W \ (X ′ ∪ Y ′),W ∩ (Y ′ \X ′)),

3. α3 := d(W ∩ (X ′ \ Y ′),Z ∩ (X ′ \ Y ′)),

4. α4 := d(W ∩ (Y ′ \X ′),Z ∩ (Y ′ \X ′)),

119

5. α5 := d(Z ∩ (X ′ \ Y ′),X ′ ∩ Y ′ ∩ Z), and

6. α6 := d(Z ∩ (Y ′ \X ′),X ′ ∩ Y ′ ∩ Z).

In propositions 5.6, 5.7, 5.8, 5.9, 5.10 and 5.11, we show a sequence of inequalities involving

these quantities.

Proposition 5.6. Each of the values din(X ′ ∩ Y ′), din(X ′ ∪ Y ′), din(X ′ ∩ Z), din(X ′ ∪ Z),

din(Y ′ ∩ Z), din(Y ′ ∪ Z) is at least (1− ε)β and is at most (1 + ε)β.

Proof. By submodularity,

din(X ′ ∩ Y ′) + din(X ′ ∪ Y ′) ≤ din(X ′) + din(Y ′) ≤ 2β. (5.48)

We note that din(X ′ ∩ Y ′) ≥ (1 − ε)β by the choice of the node z. This shows din(X ′ ∪
Y ′) ≤ (1 + ε)β. Similarly, din(X ′ ∪ Y ′) ≥ (1 − ε)β by the choice of the node w, and hence

din(X ′ ∩ Y ′) ≤ (1 + ε)β.

We argue the bounds for din(X ′ ∪ Z) and din(X ′ ∩ Z). The bounds for din(Y ′ ∪ Z) and

din(Y ′ ∩ Z) follow using a similar proof strategy. By the assumption of Case 3, we have

Z 6⊆ X ′ ∩ Y ′. We will argue that din(X ′ ∩ Z) ≥ (1 − ε)β by considering two sub-cases.

Sub-case (i): Suppose Z 6⊆ X ′. Hence X ′ ∩ Z contains z but not all of Z. By the choice

of the node z, we have din(X ′ ∩ Z) ≥ (1 − ε)β. Sub-case (ii): Suppose Z (X ′. Then,

din(X ′ ∩ Z) = din(Z). We have din(Z) ≥ d(W ,Z) ≥ (1 − ε)β using (5.26) and hence,

din(X ′ ∩ Z) ≥ (1− ε)β.

By submodularity,

din(X ′ ∪ Z) ≤ din(X ′) + din(Z)− din(X ′ ∩ Z) ≤ 2β − (1− ε)β = (1 + ε)β. (5.49)

Next, we notice that X ′∪Z and Y ′ are uncomparable, so σ(X ′∪Z,Y ′) ≥ (2− ε)β by (5.25).

However, we have

σ(X ′ ∪ Z,Y ′) = din(X ′ ∪ Z) + din(Y ′) ≤ din(X ′ ∪ Z) + β. (5.50)

Hence, din(X ′ ∪Z) ≥ (1− ε)β. Using submodularity, we obtain din(X ′ ∩Z) ≤ (1 + ε)β.

Proposition 5.7. (1− 6ε)β ≤ α3 + α4 ≤ β.

Proof. We have α3 + α4 ≤ d(W ,Z) by definition of α3 and α4. Moreover, d(W ,Z) ≤ β by

(5.24). Hence, we have the upper bound that α3 + α4 ≤ β. We next show the lower bound.

From (5.46), we recall that (2− 3ε)β ≤ dinc (Z) = din(Z) + |δin(Z)∩E1| and from (5.47), we

120

recall that (2− 3ε)β ≤ doutc (W) = dout(W) + |δout(W) ∩ E2|. Moreover, we have din(Z) ≤ β

and dout(W) ≤ β by (5.24).

Let C be the set of edges from W to Z, i.e. those counted by d(W ,Z). We next argue

that α3 +α4 = |C ∩E1 ∩E2|. In order to show this equality, we show the inequality in both

directions. For the first direction, we observe that every edge e that is counted by α3 + α4

is in C as well as E1 as well as E2, and hence α3 + α4 ≤ |C ∩ E1 ∩ E2|. For the other

direction, consider e ∈ C ∩ E1 ∩ E2. Then, e is counted either in α3 or α4 but not both.

Hence, |C ∩ E1 ∩ E2| ≤ α3 + α4.

Let a := |δin(Z) \ C| and b := |δout(W) \ C|. Using (5.24), we have

β = d(W ∪ Y ,X) + d(W ∪X,Y) + din(Z) (5.51)

≥ d(W ,X) + d(W ,Y) + din(Z) (5.52)

= b+ din(Z) (5.53)

= b+ |C|+ |δin(Z) \ C| (5.54)

= b+ |C|+ a. (5.55)

Thus, we have |C| + a + b ≤ β. Furthermore, we have |C ∩ E1| ≥ |δin(Z) ∩ E1| − a and

|C∩E2| ≥ |δout(W)∩E2|−b. From all the above, we get the following sequence of inequalities

that shows the lower bound:

|C ∩ E1 ∩ E2| ≥|C| − |C \ E1| − |C \ E2| (5.56)

=|C| − (|C| − |C ∩ E1|)− (|C| − |C ∩ E2|) (5.57)

=|C ∩ E1|+ |C ∩ E2| − |C| (5.58)

≥|δin(Z) ∩ E1| − a+ |δout(W) ∩ E2| − b− |C| (5.59)

≥(2− 3ε)β − din(Z) + (2− 3ε)β − dout(W)− (a+ b+ |C|) (5.60)

≥(4− 6ε)β − 3β (5.61)

=(1− 6ε)β.

Proposition 5.8. (1− 8ε)β ≤ α1 + α2 ≤ (1 + ε)β and (1− 8ε)β ≤ α5 + α6 ≤ (1 + ε)β.

Proof. We first show the upper bounds. We have α1 + α2 ≤ din(X ′ ∪ Y ′) which is at most

(1 + ε)β by Proposition 5.6. Similarly, we have α5 + α6 ≤ din(X ′ ∩ Y ′) ≤ (1 + ε)β. We next

show the lower bounds.

121

We first note that

α5 + α6 ≥ din(X ′ ∩ Y ′ ∩ Z)− |δin(Z) ∩ δin(X ′ ∩ Y ′ ∩ Z)|

− d(V \ (X ′ ∪ Y ′),X ′ ∩ Y ′ ∩ Z). (5.62)

We bound each of the terms in the RHS now. We observe that X ′ ∩ Y ′ ∩ Z contains z but

not all nodes in Z, hence

din(X ′ ∩ Y ′ ∩ Z) ≥ (1− ε)β. (5.63)

Moreover, we have

|δin(X ′) ∩ δin(Y ′)| = din(X ′) + din(Y ′)− |δin(X ′) ∪ δin(Y ′)| (5.64)

= σ(X ′,Y ′)− β(X ′,Y ′) (5.65)

≤ 2β − (2− ε)β (Using (5.30) and (5.27)) (5.66)

= εβ. (5.67)

Here, |δin(X ′) ∩ δin(Y ′)| ≤ εβ implies that we have at most εβ edges entering X ′ ∩ Y ′ ∩ Z
from V \ (X ′ ∪ Y ′). Thus, we have

d(V \ (X ′ ∪ Y ′),X ′ ∩ Y ′ ∩ Z) ≤ εβ. (5.68)

We further have |δin(Z) ∩ δin(X ′ ∩ Y ′ ∩ Z)| ≤ din(Z)− α3 − α4. Using Proposition 5.7, we

obtain that

|δin(Z) ∩ δin(X ′ ∩ Y ′ ∩ Z)| ≤ din(Z)− α3 − α4 ≤ 6εβ. (5.69)

Substituting the bounds from (5.63), (5.68), and (5.69) in (5.62), we obtain that α5 + α6 ≥
(1− ε)β − 6εβ − εβ = (1− 8ε)β.

We proceed by a similar argument now to show the lower bound for α1 + α2. We note

that

α1 + α2 ≥ dout(W \ (X ′ ∪ Y ′))− |δout(W) ∩ δout(W \ (X ′ ∪ Y ′))|

− d(W \ (X ′ ∪ Y ′),X ′ ∩ Y ′). (5.70)

We bound each of the terms in the RHS now. We observe that dout(W \ (X ′ ∪ Y ′)) =

din(V \ (W \ (X ′ ∪ Y ′))). The set V \ (W \ (X ′ ∪ Y ′)) does not contain w but intersects W ,

hence

dout(W \ (X ′ ∪ Y ′)) = din(V \ (W \ (X ′ ∪ Y ′))) ≥ (1− ε)β. (5.71)

122

Moreover, by |δin(X ′) ∩ δin(Y ′)| ≤ εβ derived as above, we have at most εβ edges entering

X ′ ∩ Y ′ from W \ (X ′ ∪ Y ′). Thus, we have

d(W \ (X ′ ∪ Y ′),X ′ ∩ Y ′) ≤ εβ. (5.72)

We further have |δout(W)∩ δout(W \ (X ′∪Y ′))| ≤ dout(W)−α3−α4. Using Proposition 5.7,

we obtain that

|δout(W) ∩ δout(W \ (X ′ ∪ Y ′))| ≤ dout(W)− α3 − α4 ≤ 6εβ. (5.73)

Substituting the bounds from (5.71), (5.72), and (5.73) in (5.70), we obtain that α1 + α2 ≥
(1− ε)β − 6εβ − εβ = (1− 8ε)β.

Proposition 5.9. (1− 16ε)β ≤ α1 + α6 ≤ β and (1− 16ε)β ≤ α2 + α5 ≤ β.

Proof. The upper bounds follow by α1 + α6 ≤ din(X ′) ≤ β and α2 + α5 ≤ din(Y ′) ≤ β.

On the other hand, combining the two inequalities in Proposition 5.8 gives (2 − 16ε)β ≤
α1 + α2 + α5 + α6. Now using the upper bound α2 + α5 ≤ β gives (1 − 16ε)β ≤ α1 + α6.

Similarly, we obtain (1− 16ε)β ≤ α2 + α5.

Proposition 5.10. (1− 23ε)β ≤ α3 + α6 ≤ (1 + ε)β.

Proof. Consider the set M := X ′ ∩Z. We note that α3 + α6 ≤ din(X ′ ∩Z). By Proposition

5.6, we have din(M) ≤ (1 + ε)β, which gives the upper bound. We now show the lower

bound.

By Proposition 5.6, we have

(1− ε)β ≤ din(M). (5.74)

Next we have

din(M) = α6 + d((Z \X ′) ∩ Y ′,M \ Y ′) + d(Z \ (X ′ ∪ Y ′),M) + d(V \ Z,M). (5.75)

Also,

α1 + α6 + d((Z \X ′) ∩ Y ′,M \ Y ′) + d(Z \ (X ′ ∪ Y ′),M) ≤ din(X ′) ≤ β.

Using Proposition 5.9, we thus obtain

d((Z \X ′) ∩ Y ′,M \ Y ′) + d(Z \ (X ′ ∪ Y ′),M) ≤ 16εβ. (5.76)

123

We next note that α4 + d(V \ Z,M) ≤ din(Z) ≤ β. Using Proposition 5.7, we have (1 −
6ε)β − α3 ≤ α4. We thus obtain

d(V \ Z,M) ≤ 6εβ + α3. (5.77)

Using (5.74), (5.75), (5.76), and (5.77), we obtain

(1− ε)β ≤ din(M) (5.78)

= α6 + d((Z \X ′) ∩ Y ′,M \ Y ′) (5.79)

+ d(Z \ (X ′ ∪ Y ′),M) + d(V \ Z,M) (5.80)

≤ α6 + 16εβ + α3 + 6εβ (5.81)

= α3 + α6 + 22εβ. (5.82)

Rewriting the final inequality gives (1− 23ε)β ≤ α3 + α6.

Proposition 5.11. α1 + α5 ≥ 2α3 − 51εβ.

Proof. The above propositions give us a chain of relations:

(1− 16ε)β − α6 ≤ α1 ≤ β − α6, (5.83)

(1− 8ε)β − α1 ≤ α2 ≤ (1 + ε)β − α1, (5.84)

(1− 16ε)β − α2 ≤ α5 ≤ β − α2, (5.85)

(1− 23ε)β − α3 ≤ α6 ≤ (1 + ε)β − α3. (5.86)

By substitution, we get

α3 − 17εβ ≤ α1 ≤ α3 + 23εβ, (5.87)

α1 − 17εβ ≤ α5 ≤ α1 + 8εβ. (5.88)

By substituting again, we get

α3 − 34εβ ≤ α5 ≤ α3 + 31εβ. (5.89)

Using (5.87) and (5.89), we obtain α1 + α5 ≥ 2α3 − 51εβ.

Without loss of generality, we may assume that α3 ≥ (α3 + α4)/2, since if not, there is

another iteration of the algorithm where x and y are switched and thus, the unique choices

124

of X ′ and Y ′ also get switched. Therefore, by Proposition 5.7, we have

α3 ≥ (1/2− 3ε)β. (5.90)

Let H be the digraph obtained in Step 3(ix) of the algorithm, i.e., by contracting X ′ ∩ Y ′

to a node z′, contracting V \X ′ to a node w′, and removing all w′z′ arcs. Let

A0 := ((X ′ ∩ Z) \ Y ′) ∪ {z′} and (5.91)

B0 := (X ′ \ (W ∪ Y ′)) ∪ {z′}. (5.92)

We note that (A0,B0) is a feasible solution for Step 3(x) of the algorithm: both sets contain

z′ and do not contain w′ by definition and moreover A0 (B0 since the node x is in B0 \A0.

The following proposition shows an upper bound on the value of β(A0,B0) in H:

Proposition 5.12.

|δinH (A0) ∪ δinH (B0)| ≤ α3 + 39εβ. (5.93)

Proof. For notational convenience, we will use d(P ,Q) to denote dD(P ,Q) for two subsets

P ,Q ⊆ V . We have that

|δinH (A0)| = |δH(V (H) \ A0, (X ′ ∩ Z) \ Y ′)|+ |δH(X ′ \ (Y ′ ∪ Z), z′)|

= d(V \ ((X ′ ∩ Z) ∪ (X ′ ∩ Y ′)), (X ′ ∩ Z) \ Y ′)

+ d(X ′ \ (Y ′ ∪ Z),X ′ ∩ Y ′), (5.94)

and

|δinH (B0) \ δinH (A0)| = d(V \X ′,X ′ \ (Y ′ ∪W ∪ Z))

+ d((X ′ ∩W) \ Y ′,X ′ \ (Y ′ ∪W ∪ Z)). (5.95)

We would like to bound the sum of the above four terms. We further decompose the first

term as follows:

d(V \ ((X ′ ∩ Z) ∪ (X ′ ∩ Y ′)), (X ′ ∩ Z) \ Y ′) =

d(Z \X ′, (X ′ ∩ Z) \ Y ′)

+ d(V \ ((X ′ ∩ Z) ∪ (X ′ ∩ Y ′) ∪ Z), (X ′ ∩ Z) \ Y ′). (5.96)

125

We note that d(V \ ((X ′ ∩ Z) ∪ (X ′ ∩ Y ′) ∪ Z), (X ′ ∩ Z) \ Y ′) counts a subset of the edges

entering Z. Since we have d(W ,Z) ≥ (1− ε)β, while din(Z) ≤ β, it follows that all but εβ

edges entering Z are from W . Hence,

d(V \ ((X ′ ∩ Z) ∪ (X ′ ∩ Y ′) ∪ Z), (X ′ ∩ Z) \ Y ′)

≤ d((V \ ((X ′ ∩ Z) ∪ (X ′ ∩ Y ′) ∪ Z)) ∩W , (X ′ ∩ Z) \ Y ′) + εβ

= d(W \ (X ′ ∩ Y ′), (X ′ ∩ Z) \ Y ′) + εβ. (5.97)

The last equation above is because the set (V \((X ′∩Z)∪(X ′∩Y ′)∪Z))∩W is precisely W \
(X ′∩Y ′). Hence, using (5.94), (5.95), (5.96), and (5.97), we have that |δinH (A0)∪δinH (B0)|−εβ
is at most

d(Z \X ′, (X ′ ∩ Z) \ Y ′) + d(W \ (X ′ ∩ Y ′), (X ′ ∩ Z) \ Y ′)

+ d(X ′ \ (Y ′ ∪ Z),X ′ ∩ Y ′)

+ d(V \X ′,X ′ \ (Y ′ ∪W ∪ Z))

+ d((X ′ ∩W) \ Y ′,X ′ \ (Y ′ ∪W ∪ Z)). (5.98)

We now bound this sum by suitably grouping the terms.

1. The first term d(Z \X ′, (X ′∩Z)\Y ′) and the fourth term d(V \X ′,X ′ \ (Y ′∪W ∪Z))

together count a subset of the edges entering X ′. We have

d(Z \X ′, (X ′∩Z)\Y ′)+d(V \X ′,X ′ \ (Y ′∪W ∪Z))+α1 +α6 ≤ din(X ′) ≤ β. (5.99)

Using α1 + α6 ≥ (1− 16ε)β from Proposition 5.9, we obtain

d(Z \X ′, (X ′ ∩ Z) \ Y ′) + d(V \X ′,X ′ \ (Y ′ ∪W ∪ Z)) ≤ 16εβ. (5.100)

2. The third term d(X ′ \ (Y ′ ∪Z),X ′ ∩ Y ′) counts a subset of the edges entering Y ′. We

have

d(X ′ \ (Y ′ ∪ Z),X ′ ∩ Y ′) + α2 + α5 ≤ din(Y ′) ≤ β. (5.101)

Using α2 + α5 ≥ (1− 16ε)β from Proposition 5.9, we obtain

d(X ′ \ (Y ′ ∪ Z),X ′ ∩ Y ′) ≤ 16εβ. (5.102)

3. The second term d(W \(X ′∩Y ′), (X ′∩Z)\Y ′) and the fifth term d((X ′∩W)\Y ′,X ′ \

126

(Y ′ ∪W ∪ Z)) together count a subset of the edges leaving W . We have

d(W \ (X ′ ∩ Y ′)), (X ′ ∩ Z) \ Y ′)

+ d((X ′ ∩W) \ Y ′,X ′ \ (Y ′ ∪W ∪ Z)) + α4 ≤ dout(W) ≤ β.

Using α3 + α4 ≥ (1− 6ε)β from Proposition 5.7, we obtain

d(W \(X ′∩Y ′), (X ′∩Z)\Y ′)+d((X ′∩W)\Y ′,X ′\(Y ′∪W ∪Z)) ≤ 6εβ+α3. (5.103)

Thus, the total contribution of the five terms is at most 38εβ + α3, thus proving the propo-

sition.

Using Proposition 5.12, Step 3(x) of the algorithm finds w′z′-sets A′ (B′ such that

|δinH (A′) ∪ δinH (B′)| ≤ 3

2
|δinH (A0) ∪ δinH (B0)|

≤ 3

2
(α3 + 39εβ) =

3

2
α3 +

117

2
εβ. (5.104)

Let A1 := (A′ \ {z′})∪ (X ′ ∩ Y ′) and B1 := (B′ \ {z′})∪ (X ′ ∩ Y ′) as obtained in Step 3(xi)

of the algorithm, i.e., A1 and B1 are the corresponding sets in V obtained by replacing z′ by

X ′∩Y ′ (see Figure 5.9). Now we consider the pair (B1,Y ′∪A1). Since A′ (B′, we have that

Figure 5.9: The sets A1 and B1 are completely contained in X ′.

B1\(Y ′∪A1) 6= ∅. Moreover, the node y ∈ (Y ′∪A1)\B1 and hence (Y ′∪A1)\B1 6= ∅. Hence,

(B1,Y ′ ∪ A1) is an uncomparable pair. We next compute the bicut value β(B1,Y ′ ∪ A1) of

this pair in the original digraph. The next proposition will help in bounding the bicut value.

127

Proposition 5.13.

β(B1,Y ′ ∪ A1) + α5 + α1 ≤ σ(X ′,Y ′) + |δinH (A′) ∪ δinH (B′)|. (5.105)

Proof. The proposition follows by counting the edges on the left hand side. We use a figure

to easily visualize the counting argument. We recall that X ′ ∩ Y ′ ⊆ A1 ⊆ B1 ⊆ X ′.

We use Figure 5.10. Each arrow represents that all edges from the set of nodes in the

rectangle containing its tail to the set of nodes in the rectangle containing its head are

counted in the left hand side of Proposition 5.13. In particular, edges corresponding to

δin(B1) are marked as thin continuous arrows and δin(Y ′ ∪A1) \ δin(B1) are marked as thin

dotted arrows. Edges counted by α1, i.e., corresponding to δ(W \ (X ′ ∪ Y ′),W ∩ (X ′ \ Y ′)),
are marked as thick → W arrows to indicate that the head v of the edges are in W ∩ S
where S is the set of nodes in the rectangle containing the head. Edges counted by α5, i.e.,

corresponding to δ(Z ∩ (X ′ \Y ′),X ′ ∩Y ′ ∩Z), are marked as thick dotted Z → Z arrows to

indicate that the tail u and the head v of the edges are in Z∩S1 and Z∩S2 respectively where

S1 and S2 are the set of nodes in the rectangles containing the tail and head respectively.

We note that the edges that are counted twice in the left hand side are exactly the ones

in the following four sets:

1. δ(Z∩(X ′\B1),Z∩(X ′∩Y ′)) since these edges are also contained in δ(X ′\B1,X ′∩Y ′),

2. δ(Z∩(B1\A1),Z∩(X ′∩Y ′)) since these edges are also contained in δ(B1\A1,X ′∩Y ′),

3. δ(W \ (X ′ ∪ Y ′),W ∩ (B1 \ A1)) since these edges are also contained in δ(W \ (X ′ ∪
Y ′),B1 \ A1)), and

4. δ(W \ (X ′ ∪ Y ′),W ∩ (A1 \ Y ′)) since these edges are also contained in δ(W \ (X ′ ∪
Y ′),A1 \ Y ′).

In order to prove the proposition, we need to show that every edge in the left hand side

that is counted exactly once is counted in the right hand side and moreover, those edges

that are counted twice in the left hand side are counted by two different terms in the right

hand side. In order to show this, we mark the tail of the arrows as follows: � indicates that

the edge is counted in δin(X ′), � indicates that the edge is counted in δin(Y ′) and ◦ indicates

that the edge is counted in δinH (A′)∪ δinH (B′). We note that the edges that are counted twice

have different tail marks as follows:

1. the tail marks of δ(Z ∩ (X ′ \B1),Z ∩ (X ′ ∩ Y ′)) and δ(X ′ \B1,X ′ ∩ Y ′) are different,

2. the tail marks of δ(Z ∩ (B1 \A1),Z ∩ (X ′ ∩ Y ′)) and δ(B1 \A1,X ′ ∩ Y ′) are different,

128

3. the tail marks of δ(W \ (X ′ ∪ Y ′),W ∩ (B1 \ A1)) and δ(W \ (X ′ ∪ Y ′),B1 \ A1)) are

different, and

4. the tail marks of δ(W \ (X ′ ∪ Y ′),W ∩ (A1 \ Y ′)) and δ(W \ (X ′ ∪ Y ′),A1 \ Y ′) are

different.

Thus, the left hand side is at most the right hand side.

Figure 5.10: Proof of Proposition 5.13.

Using Proposition 5.13 and inequality (5.104), we get

β(B1,Y ′ ∪ A1) ≤ σ(X ′,Y ′) + |δinH (A′) ∪ δinH (B′)| − α5 − α1 (5.106)

≤ 2β +
3

2
α3 +

117

2
εβ − α5 − α1. (5.107)

Next, using Proposition 5.11, we get

β(B1,Y ′ ∪ A1) ≤ 2β +
3

2
α3 +

117

2
εβ − (2α3 − 51εβ) = 2β − 1

2
α3 +

219

2
εβ. (5.108)

129

Finally, we recall that α3 ≥ (1/2− 3ε)β from (5.90) and hence,

β(B1,Y ′ ∪ A1) ≤
(

2 +
219

2
ε

)
β − 1

2

(
1

2
− 3ε

)
β =

(
7

4
+ 111ε

)
β. (5.109)

Based on all the cases analyzed above, the approximation factor is at most

max

{
1 + ε, 1 + 3ε, 2− ε, 7

4
+ 111ε

}
= max

{
2− ε, 7

4
+ 111ε

}
. (5.110)

In order to minimize the factor, we set ε = 1/448 to get the desired approximation factor,

thus concluding the proof of Theorem 5.6.

5.5 OPEN PROBLEMS

We gave a (3/2)-approximation for (s, ∗, t)-Linear-3-Cut. In fact, a
√

2-approximation

algorithm exists [108]. We do not know if (s, ∗, t)-Linear-3-Cut is NP-hard. Can we

determine the complexity of (s, ∗, t)-Linear-3-Cut? On the other hand, any improvement

in the approximation ratio of (s, ∗, t)-Linear-3-Cut improves the approximation of Bi-

Cut. Can we find algorithms with better approximation ratio? We described a (2−1/448)-

approximation for BiCut, yet we do not know if the problem is NP-hard. A central problem

is the resolution of the complexity of BiCut. Finally, what are other natural problems that

exhibit the complexity gap between the global and local variants?

130

References

[1] C. J. Alpert and A. B. Kahng, “Recent directions in netlist partitioning: A survey,”
Integr. VLSI J., vol. 19, no. 1-2, pp. 1–81, Aug 1995.

[2] L. Zhao, “Approximation algorithms for partition and design problems in networks,”
Ph.D. dissertation, Graduate School of Informatics, Kyoto University, Japan, 2002.

[3] M. Ghaffari, D. R. Karger, and D. Panigrahi, “Random contractions and sampling
for hypergraph and hedge connectivity,” in Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’17. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2017. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3039686.3039757 pp. 1101–1114.

[4] R. Diestel, Graph Theory, 4th Edition, ser. Graduate texts in mathematics. Springer,
2012, vol. 173.

[5] C. Chekuri, T. Rukkanchanunt, and C. Xu, “On element-connectivity preserving graph
simplification,” in Algorithms ESA 2015, ser. Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2015, vol. 9294, pp. 313–324.

[6] R. Hassin and A. Levin, “Flow trees for vertex-capacitated networks,” Discrete
Applied Mathematics, vol. 155, no. 4, pp. 572 – 578, 2007. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0166218X06003581

[7] C. Chekuri and C. Xu, “Computing minimum cuts in hypergraphs,” in Proceedings
of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, 2017.
[Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.70 pp.
1085–1100.

[8] C. Chekuri and C. Xu, “A note on approximate strengths of edges in
a hypergraph,” CoRR, vol. abs/1703.03849, 2017. [Online]. Available: http:
//arxiv.org/abs/1703.03849

[9] H. Nagamochi and T. Ibaraki, “A linear-time algorithm for finding a sparse k-connected
spanning subgraph of a k-connected graph.” Algorithmica, vol. 7, no. 5&6, pp. 583–596,
1992.

[10] H. N. Gabow, “A Matroid Approach to Finding Edge Connectivity and Packing Ar-
borescences,” Journal of Computer and System Sciences, vol. 50, no. 2, pp. 259–273,
Apr 1995.

[11] S. Guha, A. McGregor, and D. Tench, “Vertex and hyperedge connectivity in
dynamic graph streams,” in Proceedings of the 34th ACM Symposium on Principles
of Database Systems, ser. PODS ’15. New York, NY, USA: ACM, 2015. [Online].
Available: http://doi.acm.org/10.1145/2745754.2745763 pp. 241–247.

131

http://dl.acm.org/citation.cfm?id=3039686.3039757
http://www.sciencedirect.com/science/article/pii/S0166218X06003581
http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.70
http://arxiv.org/abs/1703.03849
http://arxiv.org/abs/1703.03849
http://doi.acm.org/10.1145/2745754.2745763

[12] E. Dinits, A. Karzanov, and M. Lomonosov, “On the structure of a family of minimal
weighted cuts in graphs,” in Studies in Discrete Mathematics, A. Fridman, Ed. Nauka
(Moskva), 1976, pp. 290–306.

[13] H. Nagamochi, Y. Nakao, and T. Ibaraki, “A fast algorithm for cactus representations
of minimum cuts,” Japan Journal of Industrial and Applied Mathematics, vol. 17, no. 2,
p. 245, Jun 2000.

[14] H. Nagamochi and T. Kameda, “Constructing cactus representation for all minimum
cuts in an undirected network,” Journal of the Operations Research Society of Japan,
vol. 39, no. 2, pp. 135–158, 1996.

[15] H. N. Gabow, “The minset-poset approach to representations of graph connectivity,”
ACM Trans. Algorithms, vol. 12, no. 2, pp. 24:1–24:73, Feb 2016.

[16] L. Fleischer, “Building chain and cactus representations of all minimum cuts from
HaoOrlin in the same asymptotic run time,” Journal of Algorithms, vol. 33, no. 1, pp.
51 – 72, 1999. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0196677499910398

[17] H. Nagamochi, S. Nakamura, and T. Ishii, “Constructing a cactus for minimum cuts of
a graph inO(mn+n2 log n) time andO(m) space,” IEICE Transactions on Information
and Systems, vol. E86-D, no. 2, pp. 179–185, 2003.

[18] T. Fleiner and T. Jordán, “Coverings and structure of crossing families,” Mathematical
Programming, vol. 84, no. 3, pp. 505–518, Apr 1999.

[19] E. Cheng, “Edge-augmentation of hypergraphs,” Mathematical Programming, vol. 84,
no. 3, pp. 443–465, Apr 1999.

[20] W. H. Cunningham, “Decomposition of submodular functions,” Combinatorica, vol. 3,
no. 1, pp. 53–68, 1983.

[21] W. D. Matula, “A Linear Time 2+ε Approximation Algorithm for Edge Connectivity,”
in SODA, 1993, pp. 500–504.

[22] D. R. Karger, “Random Sampling in Graph Optimization Problems,” Ph.D. disserta-
tion, Stanford University, Feb 1995.

[23] A. A. Benczúr and D. R. Karger, “Randomized approximation schemes for cuts
and flows in capacitated graphs,” SIAM J. Comput., vol. 44, no. 2, pp. 290–319,
2015, preliminary versions appeared in STOC ’96 and SODA ’98. [Online]. Available:
http://dx.doi.org/10.1137/070705970

[24] D. Kogan and R. Krauthgamer, “Sketching cuts in graphs and hypergraphs,”
in Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ser. ITCS ’15. New York, NY, USA: ACM, 2015. [Online]. Available:
http://doi.acm.org/10.1145/2688073.2688093 pp. 367–376.

132

http://www.sciencedirect.com/science/article/pii/S0196677499910398
http://www.sciencedirect.com/science/article/pii/S0196677499910398
http://dx.doi.org/10.1137/070705970
http://doi.acm.org/10.1145/2688073.2688093

[25] K. Chandrasekaran, C. Xu, and X. Yu, “Hypergraph k-cut in randomized polynomial
time,” in Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms. [Online]. Available: http://epubs.siam.org/doi/abs/10.1137/1.9
781611975031.94 pp. 1426–1438.

[26] C. Chekuri and S. Li, “A note on the hardness of the k-way hypergraph cut problem,”
November 2015, unpublished manuscript available at http://chekuri.cs.illinois.edu/pa
pers/hypergraph-kcut.pdf.

[27] O. Goldschmidt and D. S. Hochbaum, “A Polynomial Algorithm for the k-cut Problem
for Fixed k,” Mathematics of Operations Research, vol. 19, no. 1, pp. 24–37, 1994.

[28] M. Thorup, “Minimum k-way cuts via deterministic greedy tree packing,” in Proceed-
ings of the fortieth annual ACM symposium on Theory of computing. ACM, 2008,
pp. 159–166.

[29] D. R. Karger and C. Stein, “A new approach to the minimum cut problem,” Journal
of the ACM (JACM), vol. 43, no. 4, pp. 601–640, 1996.

[30] Y. Kamidoi, S. Wakabayashi, and N. Yoshida, “A Divide-and-Conquer Approach to
the Minimum k-Way Cut Problem,” Algorithmica, vol. 32, no. 2, pp. 262–276, Feb.
2002.

[31] Y. Kamidoi, N. Yoshida, and H. Nagamochi, “A deterministic algorithm for finding
all minimum k-way cuts.” SIAM J. Comput., vol. 36, no. 5, pp. 1329–1341, 2006.

[32] K. Bérczi, K. Chandrasekaran, T. Király, E. Lee, and C. Xu, “Global and Fixed-
Terminal Cuts in Digraphs,” in Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2017), ser. Leibniz
International Proceedings in Informatics (LIPIcs), vol. 81. Dagstuhl, Germany:
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2017, pp. 2:1–2:20.

[33] K. Kawarabayashi and C. Xu, “Minimum violation vertex maps and their application
to cut problems,” 2018, unpublished Manuscript.

[34] M. Queyranne, “On Optimum k-way Partitions with Sub-
modular Costs and Minimum Part-size Constraints,” Talk url:
https://smartech.gatech.edu/bitstream/handle/1853/43309/Queyranne.pdf, 2012.

[35] F. Guiñez and M. Queyranne, “The size-constrained submodu-
lar k-partition problem,” Manuscript, https://docs.google.com/viewer?a
=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21
lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1, 2012. [Online]. Available:
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWF
pbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1

[36] R. Erbacher, T. Jaeger, N. Talele, and J. Teutsch, “Directed multicut with
linearly ordered terminals,” Preprint arXiv:1407.7498, 2014. [Online]. Available:
https://arxiv.org/abs/1407.7498

133

http://epubs.siam.org/doi/abs/10.1137/1.9781611975031.94
http://epubs.siam.org/doi/abs/10.1137/1.9781611975031.94
http://chekuri.cs.illinois.edu/papers/hypergraph-kcut.pdf
http://chekuri.cs.illinois.edu/papers/hypergraph-kcut.pdf
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnxmbGF2aW9ndWluZXpob21lcGFnZXxneDo0NDVlMThkMDg4ZWRlOGI1
https://arxiv.org/abs/1407.7498

[37] S. Khot, “On the power of unique 2-prover 1-round games,” in Proceedings of the 34th
annual ACM Symposium on Theory of Computing, ser. STOC ’02, 2002, pp. 767–775.

[38] E. Dahlhaus, D. Johnson, C. Papadimitriou, P. Seymour, and M. Yannakakis, “The
complexity of multiterminal cuts,” SIAM Journal on Computing, vol. 23, no. 4, pp.
864–894, 1994.

[39] P. Zhang, J.-Y. Cai, L.-Q. Tang, and W.-B. Zhao, “Approximation and hardness results
for label cut and related problems,” Journal of Combinatorial Optimization, vol. 21,
no. 2, pp. 192–208, 2011.

[40] P. Zhang and B. Fu, “The label cut problem with respect to path length and label
frequency,” Theoretical Computer Science, vol. 648, pp. 72 – 83, 2016. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S0304397516303930

[41] C. Chekuri and V. Madan, “Approximating multicut and the demand graph,” in
Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, ser.
SODA ’17, 2017, pp. 855–874.

[42] H. Hind and O. Oellermann, “Menger-Type Results for Three or More Vertices,” Con-
gressus Numerantium, pp. 179–204, 1996.

[43] C. Chekuri and N. Korula, “A graph reduction step preserving element-connectivity
and packing steiner trees and forests,” SIAM Journal on Discrete Mathematics, vol. 28,
no. 2, pp. 577–597, 2014, preliminary version in Proc. of ICALP, 2009.

[44] K.-i. Kawarabayashi and M. Thorup, “Deterministic global minimum cut of a simple
graph in near-linear time,” in Proceedings of the Forty-Seventh Annual ACM on
Symposium on Theory of Computing, ser. STOC ’15. New York, NY, USA: ACM,
2015. [Online]. Available: http://doi.acm.org/10.1145/2746539.2746588 pp. 665–674.

[45] M. Henzinger, S. Rao, and D. Wang, Local Flow Partitioning for Faster Edge
Connectivity, pp. 1919–1938. [Online]. Available: http://epubs.siam.org/doi/abs/10.
1137/1.9781611974782.125

[46] D. R. Karger, “Minimum cuts in near-linear time,” J. ACM, vol. 47, no. 1, pp. 46–76,
Jan. 2000.

[47] R. Duan, “Breaking the O(n2.5) Deterministic Time Barrier for Undirected Unit-
Capacity Maximum Flow,” in Proceedings of the Twenty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms. Philadelphia, PA: ACM-SIAM, 2013, pp. 1171–
1179.

[48] R. Hariharan, T. Kavitha, D. Panigrahi, and A. Bhalgat, “An Õ(mn) gomory-hu tree
construction algorithm for unweighted graphs,” in Proceedings of the Thirty-ninth
Annual ACM Symposium on Theory of Computing, ser. STOC ’07. New York, NY,
USA: ACM, 2007. [Online]. Available: http://doi.acm.org/10.1145/1250790.1250879
pp. 605–614.

134

http://www.sciencedirect.com/science/article/pii/S0304397516303930
http://doi.acm.org/10.1145/2746539.2746588
http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.125
http://epubs.siam.org/doi/abs/10.1137/1.9781611974782.125
http://doi.acm.org/10.1145/1250790.1250879

[49] H. Gabow and P. Sankowski, “Algebraic algorithms for b-matching, shortest undirected
paths, and f-factors,” in Foundations of Computer Science (FOCS), 2013 IEEE 54th
Annual Symposium on, Oct 2013, pp. 137–146.

[50] H. Y. Cheung, L. C. Lau, and K. M. Leung, “Graph connectivities, network
coding, and expander graphs,” in Proceedings of the 2011 IEEE 52Nd
Annual Symposium on Foundations of Computer Science, ser. FOCS ’11.
Washington, DC, USA: IEEE Computer Society, 2011. [Online]. Available:
http://dx.doi.org/10.1109/FOCS.2011.55 pp. 190–199.

[51] H. N. Gabow, “Using expander graphs to find vertex connectivity,” in Proc. 41st
Annual IEEE Symposium on Foundations of Computer Science, 2000, pp. 410–420.

[52] M. R. Henzinger, S. Rao, and H. N. Gabow, “Computing vertex connectivity: New
bounds from old techniques,” Journal of Algorithms, vol. 34, no. 2, pp. 222 – 250,
2000. [Online]. Available: http://www.sciencedirect.com/science/article/pii/S01966
77499910556

[53] S. Even and R. Tarjan, “Network flow and testing graph connectivity,” SIAM
Journal on Computing, vol. 4, no. 4, pp. 507–518, 1975. [Online]. Available:
http://dx.doi.org/10.1137/0204043

[54] J. Cheriyan and M. Salavatipour, “Packing Element-Disjoint Steiner Trees,” ACM
Transactions on Algorithms, vol. 3, no. 4, 2007, preliminary version in Proceedings
of the 8th International Workshop on Approximation Algorithms for Combinatorial
Optimization Problems (APPROX), 52-61, 2005.

[55] A. Aazami, J. Cheriyan, and K. Jampani, “Approximation Algorithms and Hardness
Results for Packing Element-Disjoint Steiner Trees in Planar Graphs,” Algorithmica,
vol. 63, no. 1–2, pp. 425–456, 2012, preliminary version in APPROX 2009.

[56] A. A. Benczúr, “Counterexamples for directed and node capacitated cut-trees,”
SIAM Journal on Computing, vol. 24, no. 3, pp. 505–510, 1995. [Online]. Available:
http://dx.doi.org/10.1137/S0097539792236730

[57] L. Lovász, “On Some Connectivity Properties of Eulerian Graphs,” Acta Mathematica
Hungarica, vol. 28, no. 1, pp. 129–138, 1976.

[58] W. Mader, “A Reduction Method for Edge-Connectivity in Graphs,” Annals of Dis-
crete Mathematics, vol. 3, pp. 145–164, 1978.

[59] L. C. Lau and C. K. Yung, “Efficient edge splitting-off algorithms maintaining all-pairs
edge-connectivities,” SIAM Journal on Computing, vol. 42, no. 3, pp. 1185–1200, 2013.

[60] A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency. Springer Verlag,
Berlin Heidelberg, 2003.

[61] A. Frank, T. Ibaraki, and H. Nagamochi, “On sparse subgraphs preserving connectivity
properties,” Journal of graph theory, vol. 17, no. 3, pp. 275–281, 1993.

135

http://dx.doi.org/10.1109/FOCS.2011.55
http://www.sciencedirect.com/science/article/pii/S0196677499910556
http://www.sciencedirect.com/science/article/pii/S0196677499910556
http://dx.doi.org/10.1137/0204043
http://dx.doi.org/10.1137/S0097539792236730

[62] H. N. Gabow and R. E. Tarjan, “Algorithms for Two Bottleneck Optimization Prob-
lems,” Journal of Algorithms, vol. 9, no. 3, pp. 411–417, 1988.

[63] H. N. Gabow, “Efficient splitting off algorithms for graphs,” in Proceedings
of the Twenty-sixth Annual ACM Symposium on Theory of Computing, ser.
STOC ’94. New York, NY, USA: ACM, 1994. [Online]. Available: http:
//doi.acm.org/10.1145/195058.195436 pp. 696–705.

[64] F. Granot and R. Hassin, “Multi-terminal maximum flows in node-capacitated
networks,” Discrete Appl. Math., vol. 13, no. 2-3, pp. 131–156, Mar. 1986. [Online].
Available: http://dx.doi.org/10.1016/0166-218X(86)90078-8

[65] C. Chekuri, “Some open problems in element connectivity,” September 2015, unpub-
lished Survey. Available at http://chekuri.cs.illinois.edu/papers/elem-connectivity-o
pen-probs.pdf.

[66] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the ACM, vol. 44,
no. 4, pp. 585–591, 1997.

[67] H. Nagamochi and T. Ibaraki, Algorithmic Aspects of Graph Connectivity, 1st ed. New
York, NY, USA: Cambridge University Press, 2008.

[68] M. Queyranne, “Minimizing symmetric submodular functions,” Mathematical Pro-
gramming, vol. 82, no. 1, pp. 3–12, 1998.

[69] R. Klimmek and F. Wagner, “A simple hypergraph min cut algorithm,” Bericht FU
Berlin Fachbereich Mathematik und Informatik, Tech. Rep. B 96-02, 1996, avail-
able at http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS deriv
ate 000000000297/1996 02.pdf.

[70] W.-K. Mak and D. Wong, “A fast hypergraph min-cut algorithm for circuit partition-
ing,” Integration, the VLSI Journal, vol. 30, no. 1, pp. 1 – 11, 2000.

[71] A. Frank, T. Király, and M. Kriesell, “On decomposing a hypergraph into k connected
sub-hypergraphs,” Discrete Applied Mathematics, vol. 131, no. 2, pp. 373 – 383, 2003,
submodularity.

[72] A. Frank, Connections in Combinatorial Optimization, ser. Oxford Lecture Series in
Mathematics and Its Applications. Oxford University Press, 2011.

[73] D. R. Karger and D. Panigrahi, “A near-linear time algorithm for constructing a
cactus representation of minimum cuts,” in Proceedings of the Twentieth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’09. Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics, 2009. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1496770.1496798 pp. 246–255.

[74] W. H. Cunningham and J. Edmonds, “A combinatorial decomposition theory,” Cana-
dian Journal of Mathematics, vol. 32, no. 3, pp. 734–765, 1980.

136

http://doi.acm.org/10.1145/195058.195436
http://doi.acm.org/10.1145/195058.195436
http://dx.doi.org/10.1016/0166-218X(86)90078-8
http://chekuri.cs.illinois.edu/papers/elem-connectivity-open-probs.pdf
http://chekuri.cs.illinois.edu/papers/elem-connectivity-open-probs.pdf
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://edocs.fu-berlin.de/docs/servlets/MCRFileNodeServlet/FUDOCS_derivate_000000000297/1996_02.pdf
http://dl.acm.org/citation.cfm?id=1496770.1496798

[75] S. Fujishige, “Canonical decomposotions of symmetric submodular functions,” Discrete
Applied Mathematics, vol. 5, no. 2, pp. 175–190, 1983.

[76] W. S. Fung, R. Hariharan, N. J. Harvey, and D. Panigrahi, “A general framework for
graph sparsification,” in Proceedings of the Forty-third Annual ACM Symposium on
Theory of Computing, ser. STOC ’11. New York, NY, USA: ACM, 2011. [Online].
Available: http://doi.acm.org/10.1145/1993636.1993647 pp. 71–80.

[77] J. Batson, D. A. Spielman, and N. Srivastava, “Twice-Ramanujan sparsifiers,” SIAM
Journal on Computing, vol. 41, no. 6, pp. 1704–1721, 2012.

[78] Y. T. Lee and H. Sun, “An sdp-based algorithm for linear-sized spectral
sparsification,” in Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing, ser. STOC 2017. New York, NY, USA: ACM, 2017. [Online].
Available: http://doi.acm.org/10.1145/3055399.3055477 pp. 678–687.

[79] H. Aissi, A. R. Mahjoub, S. T. McCormick, and M. Queyranne, “Strongly polyno-
mial bounds for multiobjective and parametric global minimum cuts in graphs and
hypergraphs,” Math. Program., vol. 154, no. 1-2, pp. 3–28, 2015.

[80] E. L. Lawler, “Cutsets and partitions of hypergraphs,” Networks, vol. 3, no. 3, pp.
275–285, 1973. [Online]. Available: http://dx.doi.org/10.1002/net.3230030306

[81] J. B. Orlin, “Max flows in o(nm) time, or better,” in Proceedings of the Forty-fifth
Annual ACM Symposium on Theory of Computing, ser. STOC ’13. New York, NY,
USA: ACM, 2013, pp. 765–774.

[82] E. A. Dinic, “Algorithm for Solution of a Problem of Maximum Flow in a Network
with Power Estimation,” Soviet Math Doklady, vol. 11, pp. 1277–1280, 1970.

[83] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,” J. Comput.
Syst. Sci., vol. 26, no. 3, pp. 362–391, June 1983.

[84] R. Rizzi, “NOTE On Minimizing Symmetric Set Functions,” Combinatorica, vol. 20,
no. 3, pp. 445–450, 2000.

[85] M. Brinkmeier, “Minimizing symmetric set functions faster,” CoRR, vol.
abs/cs/0603108, 2006. [Online]. Available: http://arxiv.org/abs/cs/0603108

[86] J. S. Provan and D. R. Shier, “A paradigm for listing (s, t)-cuts in graphs,” Algorith-
mica, vol. 15, no. 4, pp. 351–372, 1996.

[87] S. R. Arikati and K. Mehlhorn, “A Correctness certificate for the Stoer-Wagner min-
cut algorithm,” Information Processing Letters, vol. 70, no. 5, pp. 251–254, 1999.

[88] Y. Yamaguchi, “Realizing symmetric set functions as hypergraph cut capacity,”
Discrete Mathematics, vol. 339, no. 8, pp. 2007–2017, aug 2016. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0012365X16300267

137

http://doi.acm.org/10.1145/1993636.1993647
http://doi.acm.org/10.1145/3055399.3055477
http://dx.doi.org/10.1002/net.3230030306
http://arxiv.org/abs/cs/0603108
http://linkinghub.elsevier.com/retrieve/pii/S0012365X16300267

[89] Y. T. Lee and A. Sidford, “Path finding methods for linear programming: Solving
linear programs in Õ(

√
rank) iterations and faster algorithms for maximum flow,” in

Foundations of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on.
IEEE, 2014, pp. 424–433.

[90] J. B. Kruskal, Jr., “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proc. Amer. Math. Soc., vol. 7, pp. 48–50, 1956.

[91] B. Chazelle, “Computing on a free tree via complexity-preserving mappings,” Algo-
rithmica, vol. 2, no. 1, pp. 337–361, 1987.

[92] A. Madry, “Navigating central path with electrical flows: From flows to matchings,
and back,” in Foundations of Computer Science (FOCS), 2013 IEEE 54th Annual
Symposium on. IEEE, 2013, pp. 253–262.

[93] M. Xiao, “Finding minimum 3-way cuts in hypergraphs,” Information Processing Let-
ters (Preliminary version in TAMC 2008), vol. 110, no. 14, pp. 554–558, 2010.

[94] H. Saran and V. Vazirani, “Finding k Cuts within Twice the Optimal,” SIAM Journal
on Computing, vol. 24, no. 1, pp. 101–108, 1995.

[95] M. Xiao, “An Improved Divide-and-Conquer Algorithm for Finding All Minimum k-
Way Cuts,” in Proceedings of 19th International Symposium on Algorithms and Com-
putation, ser. ISAAC ’08, 2008, pp. 208–219.

[96] P. Manurangsi, “Almost-polynomial Ratio ETH-hardness of Approximating Densest
k-subgraph,” in Proceedings of the 49th Annual ACM Symposium on Theory of Com-
puting, ser. STOC ’17, 2017, pp. 954–961.

[97] T. Fukunaga, “Computing Minimum Multiway Cuts in Hypergraphs from Hypertree
Packings,” in Proceedings of the 14th International Conference on Integer Programming
and Combinatorial Optimization, ser. IPCO ’10, 2010, pp. 15–28.

[98] K. Okumoto, T. Fukunaga, and H. Nagamochi, “Divide-and-conquer algorithms for
partitioning hypergraphs and submodular systems,” Algorithmica, vol. 62, no. 3, pp.
787–806, 2012.

[99] D. Coudert, P. Datta, S. Perennes, H. Rivano, and M.-E. Voge, “Shared Risk Resource
Group: Complexity and Approximability Issues,” Research Report RR-5859, INRIA,
2006.

[100] P. Manurangsi, “Inapproximability of Maximum Biclique Problems, Minimum k-Cut
and Densest At-Least-k-Subgraph from the Small Set Expansion Hypothesis,” in Pro-
ceedings of the 44th International Colloquium on Automata, Languages, and Program-
ming (ICALP ’17), ser. ICALP ’17, 2017, pp. 79:1–79:14.

[101] P. Raghavendra and D. Steurer, “Graph Expansion and the Unique Games Conjec-
ture,” in Proceedings of the 42nd ACM Symposium on Theory of Computing, ser. STOC
’10, 2010, pp. 755–764.

138

[102] A. Gupta, E. Lee, and J. Li, “An FPT Algorithm Beating 2-Approximation for k-Cut,”
in Proceedings of the 29th Annual ACM-SIAM Symposium on Discrete Algorithms,
2018, pp. 2821–2837.

[103] L. Zhao, H. Nagamochi, and T. Ibaraki, “Greedy splitting algorithms for approximat-
ing multiway partition problems,” Mathematical Programming, vol. 102, no. 1, pp.
167–183, 2005.

[104] C. Chekuri and A. Ene, “Approximation Algorithms for Submodular Multiway Parti-
tion,” in Proceedings of the 52nd IEEE Annual Symposium on Foundations of Com-
puter Science, ser. FOCS ’11, 2011, pp. 807–816.

[105] G. Hardy, J. Littlewood, and G. Pólya, Inequalities. Cambridge University Press, 2nd
ed., 1952.

[106] D. Karger and R. Motwani, “Derandomization through approximation,” in Proceedings
of the 26th annual ACM symposium on Theory of computing, ser. STOC ’94, 1994, pp.
497–506.

[107] V. Vazirani and M. Yannakakis, “Suboptimal cuts: Their enumeration, weight and
number (extended abstract),” in Proceedings of the 19th International Colloquium on
Automata, Languages and Programming, ser. ICALP ’92, 1992, pp. 366–377.

[108] K. Bérczi, K. Chandrasekaran, T. Király, and V. Madan, “A tight
√

2-
approximation for linear 3-cut,” in Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’18. [Online]. Available:
http://epubs.siam.org/doi/abs/10.1137/1.9781611975031.92 pp. 1393–1406.

[109] C. Chekuri and V. Madan, “Simple and fast rounding algorithms for directed and node-
weighted multiway cut,” in To appear in Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’17, 2017.

[110] N. Garg, V. Vazirani, and M. Yannakakis, “Multiway cuts in directed and node
weighted graphs,” in Proceedings of the 20th International Colloquium on Automata,
Languages and Programming, ser. ICALP ’94, 1994, pp. 487–498.

[111] E. Lee, “Improved Hardness for Cut, Interdiction, and Firefighter Problems,” in Pro-
ceedings of the 44th International Colloquium on Automata, Languages, and Program-
ming, ser. ICALP, 2017, pp. 92:1–92:14.

139

http://epubs.siam.org/doi/abs/10.1137/1.9781611975031.92

	Chapter 1 Introduction
	Notations
	Set functions
	Graphs and cuts
	Connectivity
	k-cut and k-partition
	List of problems

	Thesis contribution and organization
	Element connectivity
	Hypergraph cuts
	Hypergraph k-cut
	Global vs. Fixed-terminal cut

	Chapter 2 Element connectivity
	Preliminaries
	Element-connectivity and connections to submodularity
	Algorithmic aspects of element-connectivity
	Computing element-connectivity
	Computing a reduced graph

	Flow tree for separation
	Open problems

	Chapter 3 Hypergraph cuts
	Overview
	Other Related Work

	Preliminaries
	Node orderings

	k-trimmed certificate and faster min-cut algorithm for small
	Canonical decomposition and Hypercactus Representation
	An efficient split oracle for hypergraphs
	Decompositions, Canonical and Prime
	Computing a canonical decomposition
	Computing a prime decomposition
	Reducing space usage
	Hypercactus representation

	Near-linear time (2+) approximation for min-cut
	Strength estimation and cut sparsifiers
	Applications
	Properties of edge strengths
	Estimating strengths in uncapacitated hypergraphs
	Estimating strengths in capacitated hypergraphs

	Open problems

	Chapter 4 Hypergraph k-cut and constant span hedge k-cut
	Results
	Related work

	Preliminaries
	Hedge k-Cut in Constant Span Hedgegraphs
	Overview
	The contraction algorithm
	Contraction Algorithm for Hypergraph-k-Cut

	RPTAS for Hedge-k-Cut
	Open Problems

	Chapter 5 Global vs. Fixed-terminal cuts
	st-Sep-k-Cut
	s-Size-k-Cut
	(s,*,t)-Linear-3-Cut
	BiCut
	Overview of the Approximation Algorithm
	Approximation Algorithm and Analysis

	Open problems

	References

