Hypergraph k-Cut in Randomized Polynomial Time

Karthekeyan Chandrasekaran, Chao Xu and Xilin Yu University of Illinois, Urbana-Champaign

k-cut: edges crossing a *k*-partition of vertices Equivalently, set of edges whose removal disconnects the hypergraph into at least *k* components

k-cut: edges crossing a *k*-partition of vertices Equivalently, set of edges whose removal disconnects the hypergraph into at least *k* components

k-cut: edges crossing a k-partition of vertices Equivalently, set of edges whose removal disconnects the hypergraph into at least k components

The hypergraph *k*-cut problem

- Given: Hypergraph G = (V, E)
- Output: Minimum cardinality k-cut

Applications of *k*-cut

- Network reliability
- VLSI design
- Clustering
- ...

• Reduction to min st-cut using uncrossing arguments: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94]

- Reduction to min st-cut using uncrossing arguments: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94]
- Randomized contraction: $\tilde{O}(n^{2(k-1)})$ [Karger-Stein 96]

- Reduction to min st-cut using uncrossing arguments: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94]
- Randomized contraction: $\tilde{O}(n^{2(k-1)})$ [Karger-Stein 96]
- Divide and conquer: $O(n^{(4+o(1))k})$ [Kamidoi-Yoshida-Nagamochi 07]
- Divide and conquer: $O(n^{(4-o(1))k})$ [Xiao 08]

- Reduction to min st-cut using uncrossing arguments: $n^{\Theta(k^2)}$ [Goldschmidt-Hochbaum 94]
- Randomized contraction: $\tilde{O}(n^{2(k-1)})$ [Karger-Stein 96]
- Divide and conquer: $O(n^{(4+o(1))k})$ [Kamidoi-Yoshida-Nagamochi 07]
- Divide and conquer: $O(n^{(4-o(1))k})$ [Xiao 08]
- Tree packing: $\tilde{O}(n^{2k})$ [Thorup 08]

• k = 2, the hypergraph min-cut problem:

- k = 2, the hypergraph min-cut problem:
 - Bipartite representation and max flow

- k = 2, the hypergraph min-cut problem:
 - Bipartite representation and max flow
 - Vertex ordering [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00]

- k = 2, the hypergraph min-cut problem:
 - Bipartite representation and max flow
 - Vertex ordering [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00]
 - Randomized contraction [Ghaffari-Karger-Panigrahi 17]

- k = 2, the hypergraph min-cut problem:
 - Bipartite representation and max flow
 - Vertex ordering [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00]
 - Randomized contraction [Ghaffari-Karger-Panigrahi 17]
- k = 3:

- k = 2, the hypergraph min-cut problem:
 - Bipartite representation and max flow
 - Vertex ordering [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00]
 - Randomized contraction [Ghaffari-Karger-Panigrahi 17]
- k = 3:
 - Deterministic contraction [Xiao 08]

- k = 2, the hypergraph min-cut problem:
 - Bipartite representation and max flow
 - Vertex ordering [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00]
 - Randomized contraction [Ghaffari-Karger-Panigrahi 17]
- k = 3:
 - Deterministic contraction [Xiao 08]
- Constant rank: Hypertree packing [Fukunaga 10]
 (Rank of a hypergraph: size of the largest hyperedge)

- k = 2, the hypergraph min-cut problem:
 - Bipartite representation and max flow
 - Vertex ordering [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00]
 - Randomized contraction [Ghaffari-Karger-Panigrahi 17]
- k = 3:
 - Deterministic contraction [Xiao 08]
- Constant rank: Hypertree packing [Fukunaga 10]
 (Rank of a hypergraph: size of the largest hyperedge)

Hypergraph k-cut for $k \ge 4$ in arbitrary rank hypergraphs?

Our result

Theorem

There exists a randomized polynomial time algorithm to solve the hypergraph k-cut problem.

k = 2: Hypergraph cut (arbitrary rank)

Contractions in hypergraphs

Contractions in hypergraphs

Edges in all cuts should not be contracted

• Large probability of failure in a single step

- Large probability of failure in a single step
- Destroys the min-cut with 1/2 probability

- Large probability of failure in a single step
- Destroys the min-cut with 1/2 probability
- 1/2 probability of success

- Large probability of failure in a single step
- Destroys the min-cut with 1/2 probability
- 1/2 probability of success
- Unclear how to analyze

Our algorithm for hypergraph cut

Dampening factor:

$$\delta_e := \Pr_{v \sim V}(v \notin e) = \frac{n - |e|}{n}$$

Our algorithm for hypergraph cut

Dampening factor:

$$\delta_e := \Pr_{v \sim V}(v \notin e) = \frac{n - |e|}{n}$$

Input: Hypergraph G

While there are more than 4 vertices in G:

- 1. If $\sum_{e \in E} \delta_e = 0$, return E
- 2. Dampened sampling: Pick $e \in E$ with probability $p_e := \frac{\delta_e}{\sum_{f \in E} \delta_f}$
- 3. $G \leftarrow G/e$

Return a random min-cut in G by brute force

Analysis: Success probability

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph}G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show:
$$q_n \ge \frac{1}{\binom{n}{2}}$$
 by induction

Analysis: Success probability

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph} G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show: $q_n \ge \frac{1}{\binom{n}{2}}$ by induction

$$q_n \ge \sum_{e \in E \setminus C^*} p_e \cdot q_{n-|e|+1}$$

Analysis: Success probability

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph} G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show: $q_n \ge \frac{1}{\binom{n}{2}}$ by induction

$$q_{n} \geq \sum_{e \in E \setminus C^{*}} p_{e} \cdot q_{n-|e|+1}$$

$$= \sum_{e \in E \setminus C^{*}} \frac{\delta_{e}}{\sum_{f \in E} \delta_{f}} \cdot q_{n-|e|+1}$$
px px

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph} G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show: $q_n \ge \frac{1}{\binom{n}{2}}$ by induction

$$q_{n} \geq \sum_{e \in E \setminus C^{*}} p_{e} \cdot q_{n-|e|+1}$$

$$= \sum_{e \in E \setminus C^{*}} \frac{\delta_{e}}{\sum_{f \in E} \delta_{f}} \cdot q_{n-|e|+1}$$

$$= \frac{1}{\sum_{f \in E} \delta_{f}} \sum_{e \in E \setminus C^{*}} \delta_{e} \cdot q_{n-|e|+1}$$

$$px \quad px$$

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph}G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show: $q_n \ge \frac{1}{\binom{n}{2}}$ by induction

$$q_{n} \geq \sum_{e \in E \setminus C^{*}} p_{e} \cdot q_{n-|e|+1}$$

$$= \sum_{e \in E \setminus C^{*}} \frac{\delta_{e}}{\sum_{f \in E} \delta_{f}} \cdot q_{n-|e|+1}$$

$$= \frac{1}{\sum_{f \in E} \delta_{f}} \sum_{e \in E \setminus C^{*}} \delta_{e} \cdot q_{n-|e|+1}$$
px

For n > 4 and $n - |e| + 1 \ge 2$,

$$\delta_e \cdot q_{n-|e|+1} \ge \left(\frac{n-|e|}{n}\right) \left(\frac{1}{\binom{n-|e|+1}{2}}\right)$$

рх

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph} G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show: $q_n \ge \frac{1}{\binom{n}{2}}$ by induction

$$q_{n} \geq \sum_{e \in E \setminus C^{*}} p_{e} \cdot q_{n-|e|+1}$$

$$= \sum_{e \in E \setminus C^{*}} \frac{\delta_{e}}{\sum_{f \in E} \delta_{f}} \cdot q_{n-|e|+1}$$

$$= \frac{1}{\sum_{f \in E} \delta_{f}} \sum_{e \in E \setminus C^{*}} \delta_{e} \cdot q_{n-|e|+1}$$
px

For
$$n > 4$$
 and $n - |e| + 1 \ge 2$,

$$\delta_{e} \cdot q_{n-|e|+1} \ge \left(\frac{n-|e|}{n}\right) \left(\frac{1}{\binom{n-|e|+1}{2}}\right)$$

$$px = \frac{2}{n(n-|e|+1)}$$

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph} G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show: $q_n \ge \frac{1}{\binom{n}{1}}$ by induction

$$q_{n} \geq \sum_{e \in E \setminus C^{*}} p_{e} \cdot q_{n-|e|+1}$$

$$= \sum_{e \in E \setminus C^{*}} \frac{\delta_{e}}{\sum_{f \in E} \delta_{f}} \cdot q_{n-|e|+1}$$

$$= \frac{1}{\sum_{f \in E} \delta_{f}} \sum_{e \in E \setminus C^{*}} \delta_{e} \cdot q_{n-|e|+1}$$
px

$$\delta_{e} \cdot q_{n-|e|+1} \ge \left(\frac{n-|e|}{n}\right) \left(\frac{1}{\binom{n-|e|+1}{2}}\right)$$

$$\delta_{e} \cdot q_{n-|e|+1} \ge \left(\frac{n-|e|}{n}\right) \left(\frac{1}{\binom{n-|e|+1}{2}}\right) q$$

$$px = \frac{2}{n(n-|e|+1)}$$

$$\ge \frac{1}{\binom{n}{2}}$$

For n > 4 and $n - |e| + 1 \ge 2$,

$$q_n := \min_{\substack{C^* \in OPT(G) \\ n \text{ node} \\ \text{hypergraph}G}} \Pr(Algorithm \text{ returns } C^* \text{ on input } G)$$

Will show: $q_n \ge \frac{1}{\binom{n}{2}}$ by induction

$$q_{n} \geq \sum_{e \in E \setminus C^{*}} p_{e} \cdot q_{n-|e|+1}$$

$$= \sum_{e \in E \setminus C^{*}} \frac{\delta_{e}}{\sum_{f \in E} \delta_{f}} \cdot q_{n-|e|+1}$$

$$= \frac{1}{\sum_{f \in E} \delta_{f}} \sum_{e \in E \setminus C^{*}} \delta_{e} \cdot q_{n-|e|+1}$$

$$\geq \left(\frac{|E \setminus C^{*}|}{\sum_{f} \delta_{f}}\right) \left(\frac{1}{\binom{n}{2}}\right)$$

For
$$n > 4$$
 and $n - |e| + 1 \ge 2$,

$$\delta_{e} \cdot q_{n-|e|+1} \ge \left(\frac{n-|e|}{n}\right) \left(\frac{1}{\binom{n-|e|+1}{2}}\right)$$

$$px = \frac{2}{n(n-|e|+1)}$$

$$\ge \frac{1}{\binom{n}{2}}$$

$$\frac{|E| - |C^*|}{\sum_{f \in E} \delta_f} \ge 1$$

$$\frac{|E| - |C^*|}{\sum_{f \in E} \delta_f} \ge 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$

$$\frac{|E| - |C^*|}{\sum_{f \in E} \delta_f} \ge 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly

$$\frac{|E| - |C^*|}{\sum_{f \in E} \delta_f} \ge 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly F_V be the edges containing v, i.e., the v isolating cut

$$\frac{|E| - |C^*|}{\sum_{f \in E} \delta_f} \ge 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly F_V be the edges containing v, i.e., the v isolating cut

$$|C^*| \leq \mathop{\mathbb{E}}_{v \sim V}(|F_v|)$$

$$\frac{|E| - |C^*|}{\sum_{f \in E} \delta_f} \ge 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly F_v be the edges containing v, i.e., the v isolating cut

$$|C^*| \leq \underset{v \sim V}{\mathbb{E}}(|F_v|) = \sum_{e \in E} \Pr_{v \sim V}(e \in F_v)$$

$$\frac{|E|-|C^*|}{\sum_{f\in E}\delta_f}\geq 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly F_V be the edges containing v, i.e., the v isolating cut

$$|C^*| \leq \underset{v \sim V}{\mathbb{E}}(|F_v|) = \sum_{e \in E} \Pr_{v \sim V}(e \in F_v) = \sum_{e \in E} \left(1 - \Pr_{v \sim V}(e \notin F_v)\right)$$

$$\frac{|E|-|C^*|}{\sum_{f\in E}\delta_f}\geq 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly F_v be the edges containing v, i.e., the v isolating cut

$$|C^*| \le \underset{v \sim V}{\mathbb{E}}(|F_v|) = \sum_{e \in E} \Pr_{v \sim V}(e \in F_v) = \sum_{e \in E} \left(1 - \Pr_{v \sim V}(e \notin F_v)\right)$$
$$= \sum_{e \in E} \left(1 - \Pr_{v \sim V}(v \notin e)\right)$$

$$\frac{|E|-|C^*|}{\sum_{f\in E}\delta_f}\geq 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly F_V be the edges containing v, i.e., the v isolating cut

$$|C^*| \leq \underset{v \sim V}{\mathbb{E}}(|F_v|) = \sum_{e \in E} \Pr_{v \sim V}(e \in F_v) = \sum_{e \in E} \left(1 - \Pr_{v \sim V}(e \notin F_v)\right)$$
$$= \sum_{e \in E} \left(1 - \Pr_{v \sim V}(v \notin e)\right)$$
$$= \sum_{e \in E} \left(1 - \delta_e\right)$$

$$\frac{|E|-|C^*|}{\sum_{f\in E}\delta_f}\geq 1$$

We show $|C^*| \le |E| - \sum_{f \in E} \delta_f$ Sample a vertex v from V uniformly F_v be the edges containing v, i.e., the v isolating cut

$$|C^*| \leq \underset{v \sim V}{\mathbb{E}}(|F_v|) = \sum_{e \in E} \Pr_{v \sim V}(e \in F_v) = \sum_{e \in E} \left(1 - \Pr_{v \sim V}(e \notin F_v)\right)$$

$$= \sum_{e \in E} \left(1 - \Pr_{v \sim V}(v \notin e)\right)$$

$$= \sum_{e \in E} (1 - \delta_e)$$

$$= |E| - \sum_{f \in E} \delta_f$$

Result

Theorem

The probability that the algorithm returns a particular min-cut is $\frac{1}{\binom{n}{2}}$. Repeat it $O(n^2 \log n)$ times to obtain a min-cut with high probability.

The algorithm for hypergraph k-cut

Similar algorithm as hypergraph cut, but different dampening.

$$\delta_e := \Pr_{S \sim \binom{V}{k-1}} (S \cap e = \emptyset) = \frac{\binom{n-|e|}{k-1}}{\binom{n}{k-1}}$$

The algorithm for hypergraph k-cut

Similar algorithm as hypergraph cut, but different dampening.

$$\delta_e := \Pr_{S \sim \binom{V}{k-1}} (S \cap e = \emptyset) = \frac{\binom{n-|e|}{k-1}}{\binom{n}{k-1}}$$

Theorem

The probability that the algorithm returns a particular min-k-cut is $\Omega(\frac{1}{n^{2(k-1)}})$.

The algorithm for hypergraph k-cut

Similar algorithm as hypergraph cut, but different dampening.

$$\delta_e := \Pr_{S \sim \binom{V}{k-1}} (S \cap e = \emptyset) = \frac{\binom{n-|e|}{k-1}}{\binom{n}{k-1}}$$

Theorem

The probability that the algorithm returns a particular min-k-cut is $\Omega(\frac{1}{n^{2(k-1)}})$.

Corollary of our algorithm and analysis

The number of min-k-cuts is $O(n^{2(k-1)})$.

Additional Results: Hedgegraphs

• A hedge is a collection of edges

- A hedge is a collection of edges
- A hedgegraph consists of vertices V and a set of hedges on V

- A hedge is a collection of edges
- A hedgegraph consists of vertices V and a set of hedges on V
- The underlying graph of a hedgegraph is the union of its hedges

- A hedge is a collection of edges
- A hedgegraph consists of vertices V and a set of hedges on V
- The underlying graph of a hedgegraph is the union of its hedges
- Motivation: dependent edge failures

- A hedge is a collection of edges
- A hedgegraph consists of vertices V and a set of hedges on V
- The underlying graph of a hedgegraph is the union of its hedges
- Motivation: dependent edge failures
- Applications: layered networks, supply chain networks, . . .

Hedges

Span

The span of a hedge the number of components induced by a hedge

Span

Span of the blue hedge is 2

Additional results

- Poly-time algorithm for k-cut in constant span hedgegraphs (Hypergraphs are equivalent to hedgegraphs with span 1 [Ghaffari-Karger-Panigrahi 17])
- PTAS for k-cut in arbitrary span hedgegraphs

Additional results

- Poly-time algorithm for k-cut in constant span hedgegraphs (Hypergraphs are equivalent to hedgegraphs with span 1 [Ghaffari-Karger-Panigrahi 17])
- PTAS for k-cut in arbitrary span hedgegraphs

Thank You!