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The hypergraph k-cut problem

e Given: Hypergraph G = (V, E)

e Output: Minimum cardinality k-cut

2/21



Applications of k-cut

Network reliability
VLSI design

e Clustering
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Previous works on HYPERGRAPH k-cut

e k =2, the hypergraph min-cut problem:
- Bipartite representation and max flow
- Vertex ordering [Klimmek-Wagner 96, Queyranne 98, Mak-Wong 00]
- Randomized contraction [Ghaffari-Karger-Panigrahi 17]

e k=3:

- Deterministic contraction [Xiao 08]

e Constant rank: Hypertree packing [Fukunaga 10]
(Rank of a hypergraph: size of the largest hyperedge)

Hypergraph k-cut for k = 4 in arbitrary rank hypergraphs?
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Our result

Theorem

There exists a randomized polynomial time algorithm to solve the

hypergraph k-cut problem.
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k = 2: Hypergraph cut (arbitrary rank)
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Contractions in hypergraphs
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Contractions in hypergraphs
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Edges in all cuts should not be contracted
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Uniform probability contraction
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Uniform probability contraction

e Large probability of failure in a single step
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Uniform probability contraction

Large probability of failure in a single step

Destroys the min-cut with 1/2 probability

1/2 probability of success

Unclear how to analyze 10721



Our algorithm for hypergraph cut

Dampening factor:
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Our algorithm for hypergraph cut

Dampening factor:

n—le|

Se 1= Pr;/(vgé e)=

Input: Hypergraph G
While there are more than 4 vertices in G:

1. If)_ocpbe =0, return E

2. Dampened sampling: Pick e € E with probability p. := Zfe 5
€E

3. G« G/e

Return a random min-cut in G by brute force
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Analysis: Success probability

an:= min Pr(Algorithm returns C* on input G)
C* €0PT(G)
n node
hypergraphG

Will show: g, = (,1—) by induction
2
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Analysis: Success probability

an:= min Pr(Algorithm returns C* on input G)
C* €OPT(G)
n node
hypergraphG
Will show: g, = (,1—) by induction
2
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To show:
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We show |C*| < [E| — )< ¢
Sample a vertex v from V uniformly

F, be the edges containing v, i.e., the v isolating cut

c*1< BN =Y Prieer) =3 (1= Prie£r))

e€E e€E
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Result

Theorem

The probability that the algorithm returns a particular min-cut is

(17). Repeat it O(n? log n) times to obtain a min-cut with high

probability.

14/21



The algorithm for hypergraph k-cut

Similar algorithm as hypergraph cut, but different dampening.

n—|e|
S¢:= Pr (Sne=#@)= (";1 )
S"‘(kL) (k—1)
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The algorithm for hypergraph k-cut

Similar algorithm as hypergraph cut, but different dampening.

n—|e|
b.:= Pr (Sne=0)= (k;1 )
S~(kz1) (k—1)

Theorem

The probability that the algorithm returns a particular min-k-cut is

Q(=n)-

Corollary of our algorithm and analysis

The number of min-k-cuts is O(n2(k—1).
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Hedgegraphs

A hedge is a collection of edges

A hedgegraph consists of vertices V and a set of hedges on V

The underlying graph of a hedgegraph is the union of its
hedges

Motivation: dependent edge failures

Applications: layered networks, supply chain networks, . . . 17/21
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Span

The span of a hedge the number of components induced by a hedge
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Span

Span of the blue hedge is 2
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Additional results

e Poly-time algorithm for k-cut in constant span hedgegraphs
(Hypergraphs are equivalent to hedgegraphs with span 1
[Ghaffari-Karger-Panigrahi 17])

e PTAS for k-cut in arbitrary span hedgegraphs
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Additional results

e Poly-time algorithm for k-cut in constant span hedgegraphs
(Hypergraphs are equivalent to hedgegraphs with span 1
[Ghaffari-Karger-Panigrahi 17])

e PTAS for k-cut in arbitrary span hedgegraphs

Thank You!
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