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My main research interests are in the area of combinatorial optimization. In the past, I have worked
on cuts and connectivity problems in hypergraphs, and global and fixed-terminal cut problems in graphs.
Recently, I have been trying to explore the implication of my work to CSP theory, submodular function
optimization and matroid rank reduction. I would like to branch out into understanding the tractability
issues in those areas. I also have interests in classic algorithmic problems, and would like to reinvest in the
area of computational geometry.

Past works
My earlier work is in the field of computational geometry. In collaboration with Chang and Erickson, I
showed a fast algorithm for recognizing a generalization of simple polygons [7]. I have taken up more interest
in combinatorial structures after I made progress in element connectivity algorithms with Chekuri and
Rukkanchanunt [8]. Here I present some of my more recent works.

Fast algorithms for hypergraph cuts

A hypergraph generalizes a graph by allowing each edge to contain more than 2 vertices. A cut is a set of
edges, such that its removal disconnects the hypergraph. A min-cut is a cut with the smallest number of
edges. Richer models present challenges in designing fast algorithms due to their additional complexity. For
example, the size of a hypergraph is the sum of the edge sizes, which can be much larger than the number of
edges. I worked on finding fast algorithms in hypergraphs pertaining to cuts and connectivity. My hypergraph
algorithms match the state of the art graph algorithms, and sometimes they are conceptually simpler. In the
joint work with Chekuri, I showed the following results [9, 10].

Finding all min-cuts. The cactus representation captures all min-cuts of a graph [17]. Finding all min-cuts
is equivalent to computing the cactus representation. It took many years of continuous progress to reach the
fastest time and smallest space algorithm [20,24,43,44,45]. Finding a cactus representation takes the same
amount of time as finding a single min-cut, and the space complexity is linear. A hypercactus representation
captures all min-cut information of a hypergraph [12, 19]. Finding the hypercactus representation takes
polynomial time, but it is much slower than finding a min-cut.

We show that finding all min-cuts of a hypergraph is no harder than finding a single min-cut. The
algorithm is much simpler than the graph counterpart by applying the conceptually clean Cunningham’s
decomposition framework [14]. Finally, the algorithm takes optimal linear space. The framework depends
on finding splits, min-cuts that separate at least 2 vertices on each side. The approach alone is already
prohibitive: finding a split is no easier than finding a min-cut. Our main algorithmic insight is a near-linear
time split oracle. The oracle either finds a split or gives us two vertices whose contraction does not destroy
any min-cut.

Cut sparsifiers. Storing a dense graph in memory is expensive. It is unavoidable if we want to access all
cut values exactly. If we want an approximate value, then we can greatly decrease the number of edges in the
storage. A sparse subgraph that preserves all cuts to within a (1± ε) factor is a cut sparsifier. A near-linear
time algorithm can find an O(n log n) edge cut sparsifier in an n-vertex graph. The algorithm samples edges
by an appropriate distribution [3]. A spectral sparsifier is a generalization of a cut sparsifier, and there exists
one with O(n) edges [40].

A cut sparsifier for a hypergraph also exists [26, 37]. The same sampling algorithm works. However,
finding the probability distribution is the bottleneck. The sampling probability is inversely proportional to
the strength of an edge. The strength measures the importance of an edge to the cuts that it crosses. We
provided a near-linear time algorithm to approximate the strength. As a consequence, we get a near-linear
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time algorithm for a hypergraph cut sparsifier. The main tool is a fast algorithm for k-certificates, as we will
see next.

k-certificates. A graph is k-edge-connected if removing any k − 1 edges does not disconnect the graph.
1-edge-connectivity is the standard connectivity. Every connected graph contains a spanning tree that certifies
the connectivity of a graph. A k-edge-connected graph has a similar O(kn) edge subgraph, a k-certificate,
that certifies that the graph is k-edge-connected. k-certificates are powerful in algorithm design because it is
a sparse graph that demonstrates a lower bound on the connectivity. Most importantly, finding a k-certificate
takes linear time [42]. Therefore, finding a k-certificate is a preprocessing step in various graph algorithms [23].
A k-certificate also exists for a k-edge-connected hypergraph [26]. To find a k-certificate of a hypergraph, one
repeatedly strips off 1-certificates. Unfortunately, it is too slow for large k, and it does not work for weighted
graphs.

We show that a k-certificate for a hypergraph can also be found in linear time. Moreover, the total
size of the k-certificate we find is O(kn), not just the number of edges. In unweighted settings, the result
gives us faster algorithms for finding min-cuts, approximate min-cuts and max flows. In weighted settings,
k-certificates are essential in finding cut sparsifiers.

Minimum k-cut in hypergraphs

A set of edges is a k-cut if there are at least k components after removing them from the graph. A 2-cut is a
standard cut. Goldschmidt and Hochbaum made a surprising discovery that a min k-cut in graphs can be
found in polynomial time [25]. Subsequent works improved the running time using techniques including divide
and conquer, tree packing, and randomized contractions [30, 31, 33, 48]. Finding a min k-cut of a hypergraph
has applications in network reliability and clustering in VLSI design [1, 51]. It is much harder to find a min
k-cut in a hypergraph than in a graph. First, the uncrossing observation of graph k-cuts in Goldschmidt
and Hochbaum does not apply to hypergraphs. Second, the tree packing technique fails in the presence of
hyperedges that contain a large number of vertices. The known algorithms tackle only severely restricted
special cases. Xiao gave an algorithm for finding a min 3-cut and pointed out some fundamental difficulties
in extending it to 4-cuts [50]. Fukunaga gave a polynomial time algorithm when the edges have constant
size [21]. Solving the hypergraph k-cut problem remained an open problem since the works of Goldschmidt
and Hochbaum (1994).

Collaborating with Chandrasekaran and Yu, we resolve this problem by a randomized polynomial time
algorithm for min k-cut in hypergraphs [6]. The algorithm is based on Karger’s randomized contraction
algorithm for graph cuts [32]. The algorithm repeatedly samples an edge with appropriate probability and
contracts. When few vertices remain, it outputs a random k-cut. The difficulty lies in finding a non-trivial
probability distribution where the algorithm works. Our algorithm actually works in a more general setting.
It can find the minimum k-cut for hedgegraphs with constant span, which is a generalization of hypergraphs.

Global and fixed-terminal cut problems

The k-way cut problem, the fixed-terminal version of k-cut, asks one to find a k-cut that separates a given
set of k terminals. The 2-way cut problem is the st-min-cut problem, which is solvable by a maximum
flow computation. Unfortunately, 3-way cut is already NP-hard [15]. In contrast, finding a min k-cut that
separates some k terminals is solvable in polynomial time. The cut problems without fixed terminals are
global cut problems.

The curious complexity gap between fixed-terminal cut problems and global cut problems is a well-known
phenomenon in graphs. Collaborating with Bérczi, Chandrasekaran, Király and Lee, I showed some initial
results in this space for directed graphs [4]. Specifically, the global problem is strictly easier than the
fixed-terminal problem in both node and edge based variants. There is also the semi-global cut problem,
where one can fix fewer terminals than the number of terminals to be separated. One particular question is
finding a k-cut that separate terminals in T . It is hard when |T | ≥ 3, polynomial time solvable for |T | ≤ 1
and nothing was known for |T | = 2 [27]. In the same paper, I resolve the final case by giving a polynomial
time algorithm. This suggests the problems in this space lie on the very thin line between intractability and
tractability.

The various global and fixed-terminal cut problems have a common generalization, the minimum violation
problem. Let the violation of a vertex map between two graphs be the number of edges not mapped to
an edge. The k-cut problems can be seen as finding a surjective vertex map from G to H with minimum
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violation, where H consists of k isolated self-loops. A k-way cut is equivalent to a vertex map where the
terminal vertices are fixed in the mapping. A graph H is r-tractable or s-tractable if finding the minimum
violation fixed-terminal vertex map or minimum violation surjective vertex map is tractable, respectively.
Deciding if a graph is r-tractable is a special case of valued constraint satisfaction problem (VCSP). The
VCSP dichotomy theorem implies an algebraic dichotomy theorem of r-tractable graphs [39]. However, the
algebraic criterion is not efficiently testable. In collaboration with Kawarabayashi, I found a combinatorial
dichotomy theorem and a polynomial time recognition algorithm for r-tractable graphs [35]. There is some
initial progress on s-tractable graphs, including the case when the graph is a disjoint union of s-tractable
graphs. As a consequence, we found the first deterministic algorithm for size-constrained k-cut problem [35].

The subset sum problem

The subset sum problem takes a set of n natural numbers and a target number t. It outputs if there exists a
subset of elements that sum to t. The subset sum problem is one of Karp’s 21 NP-complete problems [34]. A
faster pseudopolynomial time algorithm for the subset sum problem leads to faster polynomial time algorithms
for many combinatorial problems [18,28]. The dynamic programming O(nt) time algorithm by Bellman stood
unchallenged for 60 years [2], except for a log factor improvement by packing the dynamic programming table
into words [47].

Collaborating with fellow PhD student Koiliaris, I gave an Õ(
√
nt) time algorithm for the subset sum

problem [38]. It is the first polynomial factor improvement in 60 years. It rapidly became my most cited
paper. The algorithm is a fast divide and conquer algorithm that cleverly discards unnecessary information.
Moreover, I considered the subset sum problem where the numbers are integers modulo m. Surprisingly, in
this case, our algorithm leads to an improvement in codes correcting limited magnitude errors, a problem in
error correction codes [11].

Future research
My specialty has lead me to an advantageous position in the intersection of multiple areas, including CSP
theory, matroid theory and submodular functions. A starting point toward a unified understanding of
tractability in these domains is to answer why min k-cut is tractable. I demonstrate a few initial directions in
the near term. Certainly, more will be uncovered during the investigation.

Theory of surjective valued CSPs. VCSP is a powerful modeling tool that can model all fixed-terminal
graph cuts problems. The recent resolution of the CSP dichotomy conjecture [5, 52] brings a conclusion to a
long search, and it gives an algebraic criterion to the tractability of VCSP [39]. However, there are more
challenges. First, the dichotomy result for VCSP only works for constraints with constant size. In particular,
VCSP does not offer any insights towards hypergraph cut problems. Second, VCSP is fundamentally incapable
of modeling global cut problems. To handle global cut problems, we need to study surjective VCSP (SVCSP)
with arbitrarily large constraints. SVCSP is becoming the next central question for the CSP community.
The boolean case with constant size constraints was solved only this year [22]. My results on global cuts
and hypergraph cuts is a beginning of exchanges with the CSP community, and I want to contribute to the
development of the SVCSP theory.

Submodular k-partition. A submodular function is the set function analog of a convex function. It
captures the notion of diminishing returns, and presents itself in various economics, machine learning, and
optimization topics. In the submodular k-partition problem, we want to partition the groundset into k parts
to minimize the sum of their value under the submodular function. In the graph case, the submodular
function is the cut function. There is an intricate connection between submodularity and VCSP. For example,
in the special case of MAXCSP, tractability is determined completely by submodularity [16]. A minimum
submodular 3-partition can be found in polynomial time [41]. It is unclear if submodular k-partition can be
solved for k ≥ 4, but my hypergraph k-cut result suggests a positive result is likely. If finding a minimum
k-partition takes polynomial time, then it explains why hypergraph k-cut is tractable, and potentially
contributes to SVCSP theory.

Matroid rank k-reduction. A matroid is a combinatorial structure that captures the idea of linear
independence. Given a matroid, we remove the smallest set of elements to decrease the rank of the matroid
by at least k. Finding such a set is the k-reduction problem. This problem is closely related to matroid
interdiction [13]. The graph k-cut problem is precisely the (k−1)-reduction problem on graphic matroids. The
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1-reduction problem is equivalent to the cogirth problem, which is already NP-hard on binary matroids [49].
However, cogirth is easy to compute for many matroids, including hypergraphic, regular and transversal
matroids [36,46]. As one can see from the graph example, k-reduction is highly non-trivial and naive attempts
like applying 1-reduction k times do not work. Despite the fact that the k-reduction problem was mentioned
as an open problem by Goldschmidt and Hochbaum in 1994, there are very few results. Only recently,
the k-reduction problem was shown to be tractable for partition matroids [29]. The conjecture is that a
minor-closed class of matroids where 1-reduction is tractable, k-reduction is also tractable. The goal is to
verify if they are indeed equivalent under polynomial time reduction.

In the long term, I am open to exploring other areas in combinatorial optimization and its interaction
with other fields. Specifically, I would like to look into its connection to problems in computational geometry.
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